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CLOUD computing (Grid or utility computing, computing on-demand) which was
the talk of the computing circles at the end of 1990s has become once again a relevant
computational topic. CLOUD computing, also considered as a fifth utility after
water, electric power, gas, and telephony, is on the basis of the hosting of services
on clusters of computers housed in server farms. This article reviews CLOUD
computing fundamentals in general, its operational modeling and quantitative
(statistical) risk assessment of its much neglected service quality issues. As an
example of a CLOUD, a set of distributed parallel computers is considered to be
working independently or dependently, but additively to serve the cumulative
needs of a large number of customers requiring service. Quantitative methods of
statistical inference on the quality of service (QoS) or conversely, loss of service
(LoS), as commonly used customer satisfaction metrics of system reliability and
security performance are reviewed. The goal of those methods is to optimize what
must be planned about how to improve the quality of a CLOUD operation and
what countermeasures to take. Also, a discrete event simulation is reviewed to
estimate the risk indices in a large CLOUD computing environment favorably
compared to the intractable and lengthy theoretical Markov solutions.  2010 John
Wiley & Sons, Inc. WIREs Comp Stat 2011 3 47–68 DOI: 10.1002/wics.139

INTRODUCTION AND MOTIVATION

CLOUD computing, an emerging form of
computing using services provided through the

largest network (Internet or CLOUD) is becoming a
promising alternative to the traditional in-house IT
computing services. CLOUD computing is a form
of computing in which providers offer computing
resources (software and hardware) on-demand. All
of these resources are connected to the Internet and
are provided dynamically to the users. Figure 1 shows
a schematic representation of CLOUD computing.
Here, CLOUD computing providers are connected to
the Internet and able to provide computing services to
both enterprise and personal users. Some companies
envision this form of computing as a single major
type of service which will be demanded extensively in
the next decade. In fact, companies like Google, IBM,
Microsoft, HP, Amazon, and Yahoo among others
have already made investments not only in CLOUD
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research but also in establishing CLOUD computing
infrastructure services (see Figure 1).

CLOUD computing services fall into three major
categories1: (1) infrastructure as a service (IaaS),
(2) software as a service (SaaS), and (3) platform as a
service (PaaS). In IaaS virtualized servers, storage and
networks are provided to the clients. SaaS is focused on
allowing clients to use software applications through
web-based interfaces. A service targeted to developers
who focus primarily on application development only,
without dealing with platform administration (operat-
ing system maintenance, load balancing, scaling, etc.),
is called PaaS. Advances in virtualization, distributed
computing, and high-speed network technologies have
given further impetus to CLOUD computing. The
major advantages of CLOUD computing are scalabil-
ity, flexibility, resilience, and affordability. However,
as users (companies, organizations, and individual
persons) turn to CLOUD computing services for
their businesses and commercial operations, there is a
growing concern from the security and reliability per-
spectives as to how those services actually rate. The
serviceability measurement can be categorized into
three areas: performance, reliability, and security. Per-
formance and reliability are two characteristics related
to the condition of the providers’ infrastructure and
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FIGURE 1 | Schematic representation of CLOUD computing.

the way they maintain and update them. Security
(data protection and disaster recovery), on the other
hand, is one aspect that is more difficult to measure.
Both CLOUD computing providers and users need a
way to measure the quality of this service, mainly in
the area of reliability and security. This metric can
provide the sending and receiving end-users with a
better sense of what both parties are getting for their
return of investment. Also, it gives providers a con-
crete numerical reference, rather than vague attributes,
so they can improve the quality of the current service.
However, despite evident benefits, CLOUD comput-
ing lacks rigorous analysis regarding its quality of
service. Specifically, a quantitative assessment of the
quality of service (QoS) in such enterprises leaves
much to be desired. In general, the quality of CLOUD
computing services is difficult to measure, not only
qualitatively, but most importantly quantitatively. A
qualitative indicator of security, for example, in terms
of colors or any other arbitrary non-numerical classi-
fication such as ‘high, medium, or low’, or yet another
scale with ‘severe, high, elevated, guarded, and low’
in Figure 2 helps if no others exist, but does not pro-
vide much other than a crude approximation.2 If one
needs to implement an adequate risk management
program, it is imperative to have a numerical index to

quantify the level of security against adversarial mal-
ware, and a degree of lack of reliability due to chance
failures.3,4

We cannot improve something that we cannot
measure or quantify.5 But the actual task is first
to define what and how to measure. There are
various studies that analyzed different parameters and
discussed their use for quantifying performance.2–4,6–9

We review several studies published for evaluation of
the QoS in CLOUD computing, as well as major trends
in the overall CLOUD computing area including the
Grid computing.

NOTATION AND HISTORY OF RISK
ASSESSMENT METHODS

Notation
rv: Random variable
LSD: Logarithmic series distribution
pdf: Probability density function
cdf: Cumulative probability density function
GB: Gigabyte (hardware storage capacity equal to

1 GB = 1000 million bytes)
MW: Megawatt (electric power capacity measure of

a generator equal to 1 million watts)

Severe High Elevated Guarded Low

FIGURE 2 | Qualitative or descriptive security metrics.
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Poisson ∧ LSD: Poisson compounded by logarithmic
series distribution

Poisson ∧ geometric: Poisson compounded by geo-
metric distribution

xi: LSD rv
θ : Correlation-like unknown parameter of the LSD

rv, 0 < θ < 1
α: Parameter of the LSD, as a function of θ

X: Poisson ∧ LSD rv, that is, sum of xi’s which are
LSD. Negative binomial rv for a given assump-
tion of k as a function of Poisson parameter

k: Parameter of the Poisson ∧ LSD
q: Variance to mean ratio, a parameter of the

Poisson ∧ LSD
λ: Parameter of the Poisson
f : Frequency
d: Average duration time per outage
LoS: Loss of Service event, when capacity cannot

meet load (service) demand plus equipment
outages at a given hour or cycle.

LoSP: Loss of service probability.
LoSE: Loss of service expected = LoSP × NHRS

(number of hours in a year, 8760 hours)
QoSE: quality of service expected = 1− LoSE
TOTCAP: Installed total capacity for an isolated

computing system not interconnected
Li: Service demand forecast rv at each discrete ith

hour for the isolated network
Oi: Unplanned forced capacity outage rv at the ith

hour
mi: Capacity margin rv at the ith hour, where

mi < 0 signifies a loss of load hour; that is,
mi = TOTCAP − Oi − Li, all variables in GB or
MW

CLOURA: CLOUD Risk Assessor Software; www.
areslimited.com and click Computer CLOUD.

Theoretical History of CLOUD
Computing—Risk Assessment Methods
Several studies on CLOUD computing security metrics
have their roots on the reliability analysis of one of the
most familiar networks: the electrical power grid or
simply, the power system. Reliability of power systems
has been studied extensively for many years and
numerous works have been published on methods to
compute power system reliability indices, specifically
LoSE.10–18 Consider an electric power supply or any
service-based system with operating (i.e., positive
power margin) and nonoperating (i.e., negative power
margin) states throughout a yearly long period
of operational discrete hours.10,17,18 The quantities
m1, m2, . . . , mn, are the margin values at hourly steps
where a positive margin denotes a nondeficient state

and negative margin denotes a deficient state. Margin
mi, at a discrete hour is the difference between
the total generating capacity (TOTCAP) and the
service demand (hourly peak load forecast, Li) plus
unplanned forced capacity outages, Oi.

Hence mi indicates the capacity (MW) margin
or balance at each discrete step i, where the realization
{mi} assumes either a positive margin or negative mar-
gin. Thus the count of negative margin hours within a
year is the loss of load expected (LoSE), which when
divided by total number of hours (NHRS) will yield
the loss of load probability (LoLP), or loss of service
probability (LoSP). Once the system is in a negative-
margin state, it should usually have a period of several
hours to form a clump of downs before overall sys-
tem recuperation fully happens following a repair
process.

MODELING RISK OF SERVICE:
FREQUENCY AND DURATION
METHOD

A few papers have treated the risk of service issue
in a stochastic sense where the number of loss of
load or service expected hours in a year (LoSE =
LoSP × NHRS) was expressed in terms of a pdf.
Among those works, the distribution of the sum of
negative-margin (loss of load) hours in an isolated
power system was approximated to be a limiting
compound Poisson ∧ geometric process as the sum
of Markov nonidentical Bernoulli random variables
were published in 1983 and 1990, respectively.10,19 It
considered variables changing from hour to hour in
contrast to a previous study20 which used a Binomial
assumption with a homogenous rate of flow.

The said Poisson process is compounded by a dis-
crete LSD.21–24 Note that LSD recognizes the true pos-
itive contagion property of the occurrences in a clump;
such as, a breakdown at a given epoch adversely affects
and attracts more failures in the forthcoming hours
until the current failures are repaired as is the case
in these analysis.2,10,19,22–25 The parameters of Pois-
son ∧ LSD, the mean and q-ratio (variance/mean), are
provided by utilizing the well-known frequency and
duration method as in (an electric power generation)
system reliability evaluation. These necessary param-
eters of compound Poisson distribution are obtained
from the popular frequency and duration method
pioneered by Hall et al. in 1968,26 later to be fol-
lowed by Ayoub and Patton in 1970 and 1976,27 and
documented by Billinton et al.11,12,15,16

The LoS events are assumed to occur in terms
of clusters or multiple happenings.23,24 The pro-
posed closed-form analytical approach is facilitated
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by using a nonapproximate but exact closed-form
probability distribution function. That is, Pois-
son ∧ LSD model, generally called Negative-Binomial
pdf for convenience.2,21–25,28 Authors support that
this new probabilistic model provides a better accu-
racy toward a more realistic modeling of the oper-
ation of a power generation system in utilizing the
advantages of the well-recognized frequency-duration
method.13,14,17,26,27 The same probabilistic model can
be applied to CLOUD computing systems, provided
some explicit conditions, which we will briefly dis-
cuss later. Otherwise Refs 3,4,7–9,29–41 will present
a good cross section of most recent papers on the
CLOUD computing current advances in terms of fun-
damentals and practice.

Review of Compound Poisson as a
Stochastic Model
Any pure Poisson process with no specific compound-
ing distribution in mind has interarrival times (e.g.,
between customer arrivals in a shopping mall) as
negative-exponentially distributed with a rate λ. That
is, the pdf of interarrival times is independent of
earlier arrival epochs with forgetfulness property. Sup-
pose arrivals or incidents of power breakdown occur
in a power generation system according to a Pois-
son counting process. Each arrival can demand or
endure a positive integer amount ‘x’ deficient hours,
which are independently and identically distributed
as {fx}. When we consider any fixed time interval t,
the number of demands (in batches or clumps) in
that time interval is said to have a compound Pois-
son distribution. If the mean breakdown arrival rate
is given as λ, then the compound Poisson probabil-
ity of X = x1 + x2 + x3 + · · · demands within a time
interval or period = t over total arrivals is given by,

P(X) =
X∑

Y=0

(λt)Ye−λtf Y∗
(X)/Y!; X = 0, 1, 2, . . . ;

Y = 0, 1, 2, . . . , X; λ > 0. (1)

where, f Y∗
(X) is the Y-fold convolution of {fx}, which

denotes the probability that ‘Y interruptions place a
total of X failures’. Of course, in the case where
each interruption places exactly one failure (hence,
the orderliness property of Poisson), Eq. (1) reduces
to a purely Poisson density function. It now remains to
find the parameters of the compound Poisson process,
‘mean’ and ‘q = variance/mean’, where q is equal to
the second moment divided by the first moment of the
compounding distribution of x

q = E(x2)/E(x). (2)

Review of Negative Binomial as a
Compound Poisson
Negative binomial distribution (NBD) has been used
in many disciplines involving count data, such as acci-
dent statistics, biological sciences, ecology, market
research, computer software, and psychology. NBD
was originally formulated as the distribution of the
number of tosses of a fair coin necessary to achieve
a fixed number of heads.2,21,23,24 Later on analyzing
the effects of various departures from the conditions
that lead to the Poisson distribution for the occurrence
of individuals in divisions of time (and space), Gos-
set concluded that if different divisions have different
chances of containing individuals, the NBD provides a
better fit than does the Poisson.28 This is why there is
a strong similarity of this expression with the negative
margin hours adversely affecting each other in a power
utility operation. Hence, NBD can also be defined to
be the Poisson sum of a logarithmic series distributed
rv. Now let X = x1 + x2 + · · · + xn, where xi are inde-
pendent identically distributed (iid) logarithmic-series
(LSD) rv with its pdf and corresponding moments as
follows:

f (x) = p(x; θ) = αθx

x
; x = 1, 2, 3, . . . , ∞;

α = − 1
ln(1 − θ)

; 0 < θ < 1 (3)

E(x) = µ = αθ

(1 − θ)
(4)

Var(x) = µ

[
1

1 − θ
− µ

]
. (5)

Then, randomly stopped sum of xi, which are
distributed with respect to a discrete LSD rv with
parameter q, will possess a negative binomial dis-
tribution with parameters k and 1 − θ = q−1 if the
governing counting-process is a Poisson with its rate
parameter equal to:

λ = −k ln(1 − θ) = k ln(1 − θ)−1 = k ln q, k < 0. (6)

Now let LSD probability density function in
Eq. (3) be reorganized and reparameterized as follows:

θ = (p/q), q = p + 1 = (1 − θ)−1, where

p = θ(1 − θ)−1 (7)

α = −1/ ln(1 − θ) = 1/ ln(1 − θ)−1 = 1/ ln q
(8)

f (x) = {1/(x ln q)}(p/q)x; x = 1, 2, 3, . . . and

q = p + 1 > 1 (9)
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E(x) = −θ/[(1 − θ) ln(1 − θ)]

= p/ ln q = (q − 1)/ ln q (10)

Var(x) = {(q − 1)/ ln q}{q − [(q − 1)/ ln q]} (11)

q = variance/mean = F′′(0)/F′(0)

= E(x2)/E(x) = 1/(1 − θ) (12)

where ln denotes natural logarithm. Then q can be
estimated as a root of moment in either Eq. (10)
or Eq. (12), where E(x) is the empirical number of
failures divided by the number of arrivals. The Pois-
son ∧ logarithmic series distribution (LSD) probability
distribution, which has a mean, kp, and variance to
mean ratio, q (variance/mean), can be expressed as
follows:

P(X) = [(k + X − 1)!/((k − 1)!X!)](pX/qk+X). (13)

The negative binomial distribution is particu-
larly convenient because of the simple recursion for-
mula easily derived from Eq. (13) as follows2,21,22,24:

P(X + 1) = {(X + k)/(X + 1)}(p/q)P(X). (14)

Hence, for a given q = variance/mean ratio
and k = λt/ ln q or given the mean ‘M’ of the
Poisson process, k = mean/p = mean/(q − 1), the
discrete state probabilities can be computed through a
simple coding using Eq. (14).22,24 On the other hand,
there are other noncompound Poisson probabilities
that also yield negative-binomial state probabilities
by other chance mechanisms. However, these
mechanisms are out of scope and not suitable to
be dealt with in this review. In the Poisson ∧ LSD, the
parameter λ of the Poisson is taken as the value of the
frequency of loss of load within a year. The average
outage duration is taken as d = E(x) of the LSD where
θ or q can be extracted from Eq. (10). Thus frequency
(f ) represents the number of times that the system is in
negative margin within a year. Average duration (d)
represents the average number of hours that the system
stays in a negative-margin at each system breakdown.

Finally LoSE = f × d. Using Eq. (10) where x is
from LSD and letting E(x) = d = (q − 1)/ ln q, one
obtains the q value through a nonlinear solution
algorithm using Newton–Raphson technique. Con-
sequently, let the rate of occurrence λ = f , where the
Poisson parameter is set equal to the frequency of loss
of load. Again using Eq. (6) and Eq. (10):

f = k ln q (15)

LoLE = f × d = k(q − 1). (16)

PROBABILISTIC MODELING ON
CLOUD COMPUTING SYSTEMS

In order to calculate an index of security or
lack thereof on CLOUD computing systems, recent
works3,4 used reliability concepts discussed in the pre-
vious sections. The proposed models are based on an
analytical closed-form probability distribution func-
tion like those explored in Refs 2,19,22. Although
the conventional reliability indices such as loss of
load expected (LoLE) through deterministic meth-
ods such as frequency-duration technique provide
some useful averaging information; it is very impor-
tant that a statistical distribution function should be
available.2,13,22,25 The purpose is to see how to com-
pletely characterize the behavior of the loss of load
hours in a year of operation so as to be able to
conduct statistical tests of hypotheses concerning the
unknown (population) value of these indices.2,10,13,25

It is believed that a statistical approach in developing
a closed form and exact (nonasymptotic) pdf for the
random variable of interest, loss of service (LoS), is
novel and more accurate. Additionally, the reviewed
compound Poisson model (i.e., NBD) respects the
autocorrelation of chance failures or security breaches
in sequential occurrence of a clump, which adversely
influences each other by attracting more failures, for
example, once an interruption occurs in a CLOUD
computing system.

The authors believe that this probabilistic mod-
eling approach offers a more realistic alternative to
the traditional reliability evaluation, for instance, in
a service-based electric power system, where the reli-
ability index calculated is conventionally quoted as
a single averaging number that bears no uncertainty
generated by the variation of the input data. Also,
the authors assume that the arrivals to a negative
margin state are governed by a Poisson counting
process, while inter-arrival times are exponentially
distributed. However, the clump size of the negative-
margin hours will be governed by the compounding
logarithmic-series distribution (LSD) that assumes the
interdependence effect. A more detailed review of
these recent studies2–4 will follow. We will review the
implementation and validation of the model described.

DISCRETE EVENT SIMULATION (DES)
ON A CLOUD COMPUTING SYSTEM

The implementation of the previously discussed model
was performed by designing and developing a soft-
ware assessment tool. This computational tool, called
CLOUD Risk Assessor (CLOURA), will aid with the
calculation of a security index for a given CLOUD
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computing system. Basically, one single security prin-
ciple is considered: availability. That is, the total time
in which a CLOUD computing system is on service
without being disturbed or without loss of service
(LoS) due an event of security breach. CLOURA is
both a simulation tool and an expert system. As simu-
lator, it will mimic real-life operation of the system in
question and as expert system, it will help to quantify
and manage the LoS index with the right responses
to ‘What If?’ questions. It will assist taking care of
the reliability or quality assessment so as to mitigate
risk by quantifying the entire CLOUD operation with
tangible and practical metrics.

Following the deterministic input data such as
the number of servers or generators (or producers)
with their failure and repair rates, and number of
repair crews, and hourly (or cyclical) service demand
which can be modified to reflect service maintenance
or changes as implemented in Figures 3 and 5 all in
gigabyte units as in Figure 10’s hourly demand (load
data); the operation starts at the first hour (or cycle)
by randomly generating the negative exponentially
distributed operating (up) and repair (down) times
where the goal is to study the random evolution of a

memoryless system.2,6 Then the available total capac-
ity at each cycle is contrasted against the outages to
calculate the available capacity, which is also com-
pared to the service demand at that hour to finally
determine the reserve capacity.

If the reserve capacity (or margin) is less than
a zero margin, then we have an undesired defi-
ciency or loss of service. Once these hours (or
cycles) of negative margin are added, it will con-
stitute the expected number of hours of loss of service,
LoSE. Divided by the total number of exposure units
such as 8760 h (NHRS) for a year, it will give the
LoSP = LoSE/NHRS. Once the LoSE is known, and
its frequency (f = number of such occurrences of
deficiencies per annum), then the average duration,
d = LoSE/f , will indicate how long on the average
a loss of service is expected to last. As in Eq. (10),
E(x) = d = (q − 1)/ ln q, one can best estimate the
value of q using a Newton-Raphson nonlinear esti-
mation technique, which later leads to the estimation
of θ as in Eq. (12) and α as in Eq. (4). Then using
Eq. (3), f (x) for x = 1, 2, 3, . . . can be estimated to
characterize the distribution of x. Further these prob-
ability values for d can be plotted; however, due to
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FIGURE 3 | Simulation results for a simple two component independent-additive system.
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FIGURE 5 | Small cyber CLOUD same as Figure 3 with only one repair crew instead of two crews.

space limitation, only the pdf for the LoSE, which
is NBD, can be seen plotted in Figure 12 derived
from results tabulated in Figure 11. Otherwise, the
CLOURA software tool can accommodate Weibull
distributed input data besides the default negative

exponential assumption, and also incorporate depen-
dence between production units as in Figure 9 by using
λ0 for failure rates, and µ0 for repair rates valued other
than quasizero.42 The tool can accommodate start-up
failure probability and start-up delay for the units as
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Individual results for producer 1 from group 1
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FIGURE 6 | For Component 1, up (green) and down (red) and no wait times (yellow) from Figure 3.
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FIGURE 7 | For Component 2, up (green) and down (red) with wait times (yellow) from Figure 5.

observed in Figures 11, 17, and 18 where the default
assumes quasi null values.10,17,43,42,25

VARIOUS APPLICATIONS TO SMALL
AND LARGE CYBER CLOUDS

In terms of cybersystems scalability, consider two
different scales. A small-scale is for example, one
experimental cyber CLOUD system with only two
groups and a total of two units (one unit per group).
A large scale example can be three large cyber systems
composed of (1) 103 groups with a total of 443 units,
(2) 24 groups with a total of 348 units, (3) 61 groups
with a total of 398 units. The small-scale experiment
is presented first to clarify the theory behind the large
systems.

Small Cyber CLOUD Systems with
Experimental, Markov, and DES Solutions
Let us assume that there are two groups of components
in a cyber system3,4 each of which has 1 GB computing
capacity. See Figures 3–7 with two scenarios:

1. One with both components having a repair crew
each, as in Figures 3 and 6, or

2. Solely one repair crew for both, where there now
will exist unfavorable ‘wait’ times in addition to
repair times due to crew unavailability as in
Figures 5 and 7.

The mathematical and statistical analyses are as
follow to support the statistical simulations:

1. In Figure 3, we study 1000 cycles (or hours) sim-
ulating 10,000 times: Using Newton’s nonlinear
root finding solution algorithm, for the result-
ing average duration of service (load) d = 25.24
cycles with the solution q = 122. We can cal-
culate the pdf values of average duration for 1,
2, 3, . . . , n, at will and can have it plotted by
the CLOURA software tool entering M = 25.24
and q = 122.3. However, the plot of d is not
included due to space limitations.

2. In Figure 5, the same as in (1) is done when
there is only one repair crew for two com-
ponents, therefore this new decision leading to
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FIGURE 8 | Eqs. (17)–(19) plotted versus time for units 1, 2 and their sum with 1.5 GB = constant demand.

‘wait times’ for a less efficient system. Therefore,
d = 48.2 cycles almost doubled and q = 271.

For our small experimental cyber system model
(see Figure 8), we consider a basic operational case
identical to which is shown in Eqs. (17)–(19). In
this figure, we represent, the operation of each unit
(Units 1 and 2 for Capacity versus Time), during the
entire period of the study, which is 13 hours or cycles.
We represent the operation of the entire system via
the addition of the two 1 GB units, 1 and 2.

Note, U3(t) = U1(t) + U2(t), 0 ≤ t ≤ 13 as fol-
low in Eqs. (17)–(19).

U1(t) = 1, 0 ≤ t < 4 and 7 < t ≤ 10

= 0, elsewhere (17)

U2(t) = 1, 0 ≤ t < 2; 3 ≤ t < 6 and 9 ≤ t < 12

= 0, elsewhere (18)

U3(t) = 2, 0 ≤ t < 2; 3 ≤ t < 4 and 9 ≤ t < 10

= 1, 2 ≤ t < 3; 5 ≤ t < 6; 7 ≤ t < 9 and

10 ≤ t < 12 = 0, elsewhere. (19)

In this sample graph of Figure 8, unit 1 is avail-
able during the initial 4 h servicing at its entire capacity
of 1 GB. However at the end of the fourth hour a dis-
ruption occurred, which caused unit 1 to be down. It
takes 3 h for unit 1 to recover and it fails after 3 h.
Unit 2 operates other than between second and third,
and between sixth and ninth hours. So, we can see
when each unit (U1 and U2), the entire cyber system
(U3) is up (available) or down (nonavailable) in an
independent setting. This model is a form of oversim-
plified CLOUD environment with additive resources.

It is a conglomerate of computers (units) distributed in
different locations but working or servicing in parallel
(simultaneously) to an external clientele of customers.
This cluster of computers is arranged in groups, com-
prising sets of computers with similar specifications.
The parameters involved in this simple experimental
model are given as follow:

• Disruption rate caused by security breaches: γ

• Mean time to disruption: m = 1/γ

• Recovery rate: µ. The frequency with which a
system recovers from a security breach.

• Mean recovery time: r = 1/µ.

• Availability: P = µ/(µ + γ )

• Unit capacity: C. It refers to maximum unit
generation or production capacity

• Demand of service: D. Total service demand for
the entire system.

An initial study is designed for a constant service
(demand), but a more realistic variable demand will be
considered for larger-scale systems. Here unit capacity
and service (demand) are measured in terms of
computing cycles (e.g., flops), Gigabytes (GB) storage.

Unit 1 Availability:

• P1 = 7/13 = 0.538461538 = µ1/(µ1 + γ1)

• Mean time to disruption: average servicing hours
before disruption, m1 = 7/2 = 3.5 = 1/γ1

• Disruption rate: γ1 = 1/3.5 = 0.285714286

• Mean recovery time: γ1 = 6/2 = 3.0 = 1/µ1

• Recovery rate: µ1 = 1/3.0 = 0.333333333.
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Unit 2 Availability:

• P2 = 8/13 = 0.615384615 = γ2/(µ2 + γ2)
• Mean time to disruption: average servicing hours

before disruption, m2 = 8/3 = 2.66 = 1/γ2

• Disruption rate: γ2 = 1/2.66666667 = 0.375
• Mean recovery time: γ2 = 5/3 = 1.66666667 =

1/µ2

• Recovery rate: µ2 = 1/1.66666667 = 0.6.

The service demand is assumed to be con-
stant and equal to 1.5 GB. The result for the
small-scale experimental system availability from
Figure 8 is that the probability of U3(t) = 2 (i.e.,
larger than 1.5 GB) is 4/13 = 0.307. Markov
Chain’s exact result by substituting the input val-
ues above into Eq. (20) as follows in Figure 9
is P1 = (0.3333)(0.6)/[(0.2857 + 0.3333)(0.3750 +
0.6)] = 0.331. DES’s (Discrete Event Simulation)
LoSE is 0.303 after 100,000 simulation runs (each sim-
ulation run = 13 hours or cycles) also as in Figure 9.
With 1,000,000 simulation runs, the DES result con-
verges to 0.305. All three solutions (experimental,
simulation, Markov) with different methods are satis-
factorily close. The experimental case denotes only a
single realization of the DES because one can realize
the simulation input data in many more than a single
scenario among which realization of Eqs. (17)–(19) is
only one of them. This comparison duly demonstrates
the validity of the discrete event simulation of additive
units under a constant or varying service demand, a
feature which will prove very useful. DES software
will mimic and predict the CLOUD operations before
actually experiencing what maybe the costly real life
occurrences and their consequences.

Large Cyber CLOUD Systems with Markov
and DES Solutions
(1) Assume now that there is a very large system to
examine like those in Refs 25,42–44 such as an inter-
connected cyber CLOUD in a server farm with 103
production groups, each of which has a given number
of components, totaling to 443 servers and each with
its own distinct repair crew. Total installed capac-
ity is 26,237 GB. Java coded CLOURA simulates
the cyber CLOUD for 10,000 runs covering 8760
cycles (or hours). The service demand (as a variable
load) for an annual period of 8760 h is available, and
given in Figure 10 in Megawatts (power) or Gigabytes
(cyber).

As Figure 11 shows, at the end of 43 min of com-
putation time for 10,000 simulation runs (one simula-
tion run = one calendar year), CLOURA computes the

average duration of loss of service (or load) as 3.12
cycles (or hours) with a frequency of f = 384 times.
Hence, f × d = 3.12 × 384 = 1202 cycles of loss of
service with a LoS probability of 1202/8760 = 0.137.

Expected Unserved Production, or EUP units (in terms
of gigabyte cycles) was 2,060,459. In another what-
if study, one can choose less than a perfect number
(=443) of crews such as one half (=222) to see what
an adverse effect it plays causing undesirable wait
times. This leverages the CLOUD managers to judge
the extent of crews so as to mitigate the risk to a toler-
able value. Experimental model solution is infeasible
and impossible for large systems.

The pdf (exact probability), cdf (cumulative
probability), and sdf (survival probability) columns
are given on the right-hand side in Figure 11 where any
of the statistical plots can be extracted at will to facili-
tate statistical inference on the average duration. Since
the total LoS duration is the average duration multi-
plied by the frequency. The LSD’s pdf summed at every
interruption of loss of service is given by Eq. (3). These
individual probabilities add up to form the total LoSP
(Loss of Service Probability) in deriving a closed form
distribution for statistical inference. The total hours
or cycles of expected LoS is a Compound Poisson, that
is, Negative Binomial. Then LoSE is then distributed
with respect to a Negative Binomial, NBD (M = 1202,
q = 7.16) or Poisson ∧ LSD whose distribution func-
tions can be obtained from the NBD software shown
in Figures 12 and 13. Note, for the pdf plot of average
duration d, simply use the same q = 7.16 this time
with M = 3.12 in Figure 11 filling the blanks for NB
parameters on the upper right hand corner.

The expected surplus production (for units
above the zero margin threshold) was calculated to be
35,343,953 gigabyte cycles (or hours). In Figure 14,
those red (load) and blue (supply) combinations are
shown. The deficiency occurs when the service demand
(load) is higher than the production supply. Figure 15
shows ‘Reserve Margin = Installed Capacity-Load-
Outage’ at any given cycle. Figure 16 illustrates any
particular unit’s fluctuations of up and down states
in an entire year of operations, where lower than the
marginal zero indicating red line indicates deficient
hours of load to contribute to loss of load hours.

The feature in Figure 11 for Figure 10 has flexi-
bilities to add a desired amount to all loads, or modify
a certain selected load or delete a selected load or
add single selected load as well as adding a desirable
amount to a range of selected loads like from 8000th
to 8760th or scaling a range like multiplying by a
constant of 3/2 or 1/2. These are necessary for load
(service) maintenance or shedding or load appending.
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P1 = µ1 µ2/(λ1 + µ1)(λ2 + µ2) (20)
(21)
(22)
(23)

= λ1 µ2/(λ1 + µ1)(λ2 + µ2)

= λ2 µ1/(λ1 + µ1)(λ2 + µ2)
= λ1 λ2/(λ1 + µ1)(λ2 + µ2)
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FIGURE 9 | Markov states, small cyber CLOUD, markov state space equations, DES solutions.
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FIGURE 10 | An example of hourly load (values) demand from 1st to 8760th hour in a calendar year.

Figure 10 shows for the above cited example (1)
data values from 1st to 8760th hour for 103
production groups, each of which has a given number
of components, totaling to 443 servers.

Surplus and deficiency productions (gigabyte
cycles) are not additive, and not related other than
the fact that if one increases, the other decreases.
Figure 16 depicts the individual behavior of a pro-
ducing unit among many to constitute the entire
CLOUD. In the middle column of Figure 11, this
time, surpluses instead of deficiencies are stud-
ied to estimate availability instead of unavailabil-
ity. That is the average of surpluses, s = 20 cycles
recurring 384 times totaling to 7558 cycles = 8760
(annual total)—1202(deficiencies). Figures 12 and 13
illustrate the plotting of NBD (M = 1202, q = 7.16)
using the earlier research by the author21,22,25,2 on
NBD.

(2) The next large cyber system example to
be examined comprises 24 groups of units total-
ing to 348 units in Figure 17. Therefore, the total
number of Markov system’s up and down states
are 2348 = 5.73374654 × 10104, which is indescrib-
ably enormous. Respectively, the failure (disruption)
rate λk, repair (recovery) rate µk, and production
capacity (storage or generation) Ck for each of kth
unit are supplied by the analyst. The service demand
(load) cycle is varying from hour to hour for the entire
year (8760 h) of operations. Experimentally it is very
tedious and not practical, if not infeasible, to add the
existing unit availabilities hour by hour for 348 units,
a process which will take years. This is why discrete
event simulation (DES) techniques have to be used
to obtain large-scale solutions, which are intractably
lengthy using theoretical Markov solutions.

The result by using the Markov chains simi-
lar to the small-scale system (Figure 9) is the steady
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FIGURE 11 | Simulation results for a large cyber CLOUD with 443 components for large-scale example (1).
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FIGURE 12 | The frequency distribution of the LoSE (M = 1202, q = 7.16) from Figures 11 and 13.

state probability of the operational units satisfying
the demand. The experimental or manual solution for
348 units is impossible because it is infeasible and
intractable. That is exactly where a DES is necessary
to mimic a quasi-life scenario of CLOUD operations.

The Markov Chain study using an Alabama
supercomputer gave a solution of QoSE = 1 −
LoSE = 1 − 0.0191 = 0.9809 for the entire annual
operation, whereas the discrete event simulation
resulted in QoSE = 1 − 0.0546 = 0.9454 (see LSP in
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FIGURE 13 | The print out shows P(LoSE > 1202 h) = 0.4883 (slight right-skewed) as in Figure 13.
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FIGURE 14 | Hourly available (blue colored available = Installed 26,237 GB − Outage Capacity due to hourly failures) and load (red colored
customer demand) cycles over a year.
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FIGURE 16 | Group 1’s Component 1 up-down fluctuations in a year (8760 cycles) of operations.

Figure 17) which is satisfactorily comparable with a
probabilistic difference of 0.0355 to the analytical
Markov state space solution for 10,000 simulation
runs (=10,000 calendar years) in 30 min of run time.

(3) For the Markov analysis of another large
cyber system, as studied in Figure 18 in addition to the

first large-scale example of Figure 11, was composed
of 62 groups with a total 398 production units. For
the Markov state solution, thus the total number
of system states happens to be 2398 = 6.4556247 ×
10119 (very far away quadrillions), which is again
a colossal value. The computing effort took about
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36 h with the Alabama Supercomputer Center; see
Figure 19. Earlier when another CLOUD simulation
was attempted with 443 production units of Figure 11,
the supercomputing process crashed due to number of
states exceeding 10133. The goal was to calculate the
CLOUD’s steady state probability of being reliable
at any given time under the data assumptions. The
probability of likelihood is calculated for each steady
state. Then, for each incremental time step, the
probability of matching or exceeding the variable
service demand is computed such as the one listed
in Figure 10. Finally, the reliability is averaged by

calculating the steady state probability over the entire
period in dividing the number of favorable hours by
the total number of exposure hours (=8760). The
system service demand was a varying load cycle hour
by hour for the entire 8760 cycles or hours. The result
of the lengthy Markov Process solution is the steady
state probability of the entirety of production units
satisfying the system service demand.

Quality of Service Expected (QoSE) due to
Markov Chains for the very large-scale CLOUD
of 398 units resulted in 1 − LoSE = 1 − 0.061602 =
0.938398 (Figure 19) whereas due to Discrete Event

Year factor Total groups

Total time steps(a)

Group ID

Total units

µ

Cap./unit

8760        1.0     24

1    4     340       0.028      0.0552

2    6     300       0.013      0.0187

3    8     300       0.406      0.5170

4    8     210       0.005      0.0283

5    1     210       0.008      0.0491

6   12     169       0.063      0.1073

Data file

λ

(b)
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Unit 5 Unit 6 System Unit 14Unit 11 Unit 12 Unit 13

Unit 15
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FIGURE 17 | (a) Large cyber CLOUD data file for Markov state solution. (b) Large cyber CLOUD schema. (c) Digital event simulation results for
large cyber CLOUD in large-scale example (2).
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FIGURE 17 | Continued.

Simulation (DES) as in Figure 18, QoSE = 1 −
LoSE = 1 − 0.0953 = 0.9047. A difference of 0.0337
or roughly 3% is justifiable since it is virtually
impossible to process such colossal grids even
with supercomputers. See Figure 19 using Alabama
Supercomputing Center (www.asc.edu). This printout
shows that the digital event simulation and Markov
solutions yield comparable results.

DISCUSSIONS ON CLOUD COMPUTING
AND FIGHTING CYBERCRIME

CLOUD computing, as so called 5th utility, is
becoming such a powerful entity for cyber-users as
well as large commercial companies that someday
users will not need to buy other than a computer
terminal such as in the case we only provide for electric
bulbs and wiring to light up our homes from the
electric power grid. Meanwhile Web platforms, which
supply service-based access to infrastructure services,
information, applications, and business processes
through Web based CLOUD computing environments
are on the rise.45 However, these cyber CLOUDS at
the turn of the 21st century, just like the electric
power or gas or water supply companies launching
on commercial business in the western hemisphere at
the turn of the 20th century, will need to sell highly
reliable (not just any) and relatively secure (free of
hacking and virus malware) service to their new-breed

demanding clients. This is only possible if the service-
based system managers can quantify and then duly
manage their risks of not meeting the service demand
as planned.

In many ways, electric power, or gas, or water,
or telephony utilities’ challenges will be revisited as
they once were eminent in the latter half of the 20th
century.14–17 CLOUDS are clearly related to Grids,
both in goals and implementation, but there are
differences.41 CLOUDS as systems are not orthogonal
to Grids, nor are they necessarily complementary
to Grids. CLOUDS are the evolution of Grids and
they can both in turn be viewed as evolution of
Clusters. CLOUDS can be viewed as a logical and
next higher-level abstraction from Grids which in
their current form of deployment and implementation
have not been as successful as hoped in engendering
distributed applications for higher level applications.
It is important to note, we are not suggesting that
Grids are not useful, but pointing out, how it is
generally agreed that the vision of pervasiveness,
ubiquity and interoperability of computing resources
and infrastructure in the early days of Grid computing
have not come to fruition.30

In addition to an overview of CLOUD comput-
ing practices, we have also reviewed that the statistical
estimation of the sum of loss of service (LoS) events
in hours or cycles is available by modeling through a
compound Poisson process (NBD: Negative Binomial
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FIGURE 18 | Simulation results for a large cyber CLOUD with 398 components in large-scale example (3).

FIGURE 19 | Large-scale cyber CLOUD example Markov Solution for 398 Units using Alabama Supercomputer for large-scale example (3).

Distribution). One assumes the compounding distri-
bution of the NBD to be a logarithmic series dis-
tribution. This model is math-statistically a practical
approximation for two essential reasons. The first
one is the taking into account of the phenomenon
of interdependence or true contagious property of
the system failures that constitute a cluster at each
breakdown in concert with the electric power or cyber

system engineering practice. Secondly, the underlying
distribution to estimate the probability distribution
function for the number of power or cyber system
failures in this review paper is no more an asymptot-
ical or an approximate expression as conventionally
has been treated,26,27,11,12 whereas it is established as
a closed-form and non-asymptotic exact probability
distribution function.22,25,2
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When the system is in a negative margin at
any hour, the contagious condition affects the forth-
coming hours until full system recuperation. Due
to this true contagious property, the usage of a
compounded Poisson with LSD gives mathematically
sound results where the failures can be interdepen-
dent. The parameters of the Poisson ∧ LSD can be
obtained in the CLOUD system application by the
well-known method, namely frequency and duration
method, as earlier exercised in a power generation sys-
tem reliability evaluation. Contrary to limiting Pois-
son ∧ geometric process, the proposed Poisson ∧ LSD
gives a closed-form exact distribution for loss of load
hours in a power generating or cyber CLOUD com-
puting setting. In the event of a cyber or power system,
the process is simulated hourly using CLOURA soft-
ware based on the additive (cumulative) property of
the distributed server farms with their adequate (or
inadequate according to budgeting resources) number
of repair crews to handle the service outages, therefore
meeting the demand of service (load).

The ratio of unsuccessful interception of the
load (service demand) cycles or hours, Loss of Service
Expected = LoSE = f × d, by the supply side is calcu-
lated in addition to the frequency of loss of service (f )
and average duration of loss of service (d). Further,
parameters of the probability density functions of
LoSE and d as random variables are estimated for sta-
tistical inference. Load management is also available
and desired maintenance planning can be incorpo-
rated. In the cyber-world, a CLOUD administrator
should benefit by first assessing the reliability and
equally, security of CLOUD computing systems rising
in popularity. There are other cyber-networks where
s–t (source–target) is sought where the topology is
directional,46–48 not regional or national as in this
study. Then, the CLOUD managers can prematurely
use the said computational tool (CLOURA) to avoid
bottlenecks by preliminary planning through emu-
lating the operations, and checking where one can
improve. The bottom-line impact is that a CLOUD
planning department will know in advance through
examining and responding to what–if questions by
planning how to weigh its physical resources before
actually taking remedies or buying the equipment, or
hiring new personnel to fortify repair facilities.

The physical glitches and monetary losses
(excluding the erosion of customer trust) could have
been many times avoided if the CLOUD operations
centers knew the actual reliability status of the supply/
demand system and what to do to raise the quality
of service (QoS) by taking the necessary precautions
so as to plan ahead. Of course not to forget, input
data to be entered carries a very important role and

responsibility for the success of this software, that
is, CLOURA for the job of quantitative risk assess-
ment, and consequently ad hoc risk management.
It can apply dependence between the production
units (components) by using the necessary features
as in Figures 11, 17, and 18 for three large examples
through rightful evaluations of λ0 and µ0.

The much neglected reliability or security assess-
ment amid rampant commercialism will continue to be
a liability; if otherwise, with media coverage of glitches
becoming everyday news.49 This is why the CLOUD
reliability and security metrics have to be computed
and daily operations ought to be simulated to cir-
cumvent any potential problems in advance before
undesirable glitches happen, and consequently com-
mercial customers lose trust. However, if the growth
of Grid technology is to continue, it will be important
that Grid systems also provide high reliability. In par-
ticular, it will be critical to ensure that Grid systems
are reliable as they continue to grow in scale, exhibit
greater dynamism, and become more heterogeneous in
composition.29 In brief, ensuring Grid system reliabil-
ity in turn requires that the specifications used to build
these systems fully support reliable Grid services30–32.
In Ref 33, whereas, the authors describe a CLOUD-
based infrastructure that they have developed that is
optimized for wide area, and high performance net-
works, designed to support data mining applications.
The said infrastructure consists of a storage CLOUD
called Sector and a compute CLOUD called Sphere.
They describe two applications that they have built
using the CLOUD and some experimental studies.
Therefore, with the significant advances in Informa-
tion and Communications Technology (ICT) over the
last half century, there is an increasingly perceived
vision that computing will one day be the 5th util-
ity (after water, electricity, gas, and telephony). This
computing utility, like all other four existing utilities,
will provide the basic level of computing service that
is considered essential to meet the everyday needs of
the general community.34 To deliver this vision, a
number of computing paradigms have been proposed,
of which the latest one is known as CLOUD com-
puting. In the ref.34, they define CLOUD computing
and provide the architecture for creating CLOUDS
with market-oriented resource allocation by leverag-
ing technologies such as Virtual Machines (VMs).

Grid computing has been the subject of
many large national and international IT projects.41

However, not all goals of these projects have been
achieved. In particular, the number of users lags
behind the initial forecasts laid out by proponents
of Grid technologies. This particular underachieve-
ment may have led to claims that the Grid concept as
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a whole is on its way to being replaced by CLOUD
computing and various X-as-a-Service approaches. In
another paper, the authors try to analyze the cur-
rent situation, and to identify promising directions
for future Grid development. Although there are
shortcomings in current Grid systems, we are con-
vinced that the concept as a whole remains valid
and can benefit from new developments, including
CLOUD computing. Furthermore, we strongly believe
that some future applications will require the Grid
approach and that, as a result, further research is
required in order to turn this concept into reliable,
efficient and user-friendly computing platforms.35

To summarize, the future of computing lies in
CLOUD computing, whose major goal is to reduce
the IT services’ costs while increasing processing
throughput, and decreasing processing time, increas-
ing reliability, availability and flexibility.36 CLOUD
computing is a new paradigm where computing
resources (from data storage to complete configu-
rations of distributed systems) are made available
and offered over the Internet as scalable, on-demand
(Web) services. In CLOUD computing, the resources
hosted within CLOUDS can be anything: they could
be database services, virtual servers (virtual machines),
complete service workflows or complex configurations
of distributed computing systems such as clusters.
Regardless of their nature, all resources are provided
via services to clients (users or software processes) by
computers rented from the CLOUD, such as those
offered by, for example, Amazon, Google, Microsoft,
rather than by private systems. The services are pro-
vided on demand and clients only pay for the quantity
of resources (data storage, computation, etc.) they use.
Moreover, CLOUD computing is becoming an adopt-
able technology for many of the organizations with its
dynamic scalability and usage of virtualized resources
as a service through the Internet. CLOUD comput-
ing will have a significant impact on the educational
environment in the future.

Additionally, CLOUD computing is an excel-
lent alternative for educational or state institutions
which are especially under budget shortage in order
to operate their information systems effectively with-
out spending any more capital for the computers
and network devices. Universities take advantage of
available CLOUD-based applications offered by ser-
vice providers and enable their own users/students to
perform business and academic tasks.37

Authors of this review have surveyed tech-
niques to assess reliability or security of such
CLOUD computing systems assisted by statistical
methodology. The multifarious risks posed by this
new IT delivery model, that is, CLOUD computing,

ranging from a potential lack of awareness of where
data is held to possible insider threats and vendor
lock-in, have been well documented.38 One of the
key promises of CLOUD is the speed and ease with
which organizations can temporarily access additional
compute resources if required, so-called ‘CLOUD-
bursting’. However, there is a tension between this,
and the need for due diligence via mechanisms such as
auditing (versus security breaches), which inevitably
take time.38 In his keynote at RSA 2010 (an encryption
and network security company) President Art Coviello
spoke of the industry’s latest and greatest challenge:
Securing CLOUD computing. ‘A new wave of com-
puting is struggling to take hold’, he announced. ‘It is
called CLOUD computing. We must play an essential
role in making CLOUD computing a secure real-
ity’, Coviello continued by referring to the members
of the information security industry in the audience.
‘The information security industry needs to leverage
technology to enable secure CLOUD computing’.39

Fighting cybercrime in the CLOUD is crucial
because cybercrime is now a roughly $100 billion mar-
ket, surpassing the illegal drug trade. The openness
of CLOUD computing denotes that cybercriminals
are a busy bunch these days. They steal identities,
grab credit and debit card account numbers, and
wage a myriad of other attacks on unwitting users,
businesses, and vulnerable websites. Their weapon
of choice is the malware injection. Among the most
vulnerable—and the most lucrative for cybercriminals
due to the sites’ enormous reach—are trusted, popu-
lar sites with unpatched vulnerabilities.8 The risk of
hackers getting at the data is only the smallest part
of the risk involved in storing data with third parties.
Yet not all CLOUD security requires remote storage
of private data, and in many cases the addition of a
CLOUD security component to an overall network
security strategy is very beneficial.

Like it or not, CLOUD security elements are
being integrated into everything from antivirus pro-
grams to firewalls.41 The trick is to know which
technologies have the best benefit-to-risk ratio. There
are many benefits that can come from using CLOUD
security and whether you know it or not, you are
probably using it already. Nearly all of the major
web browsers now have built-in features that check
URL blacklists, which are regularly updated. When
doing a search on Yahoo, for example, sites that
have failed Google’s antivirus checks receive a ‘This
site may harm your computer’ notice. If attempting
to go on to a site like this from within Firefox, the
browser will display a message warning that the site
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has been blacklisted. This is one excellent use of
CLOUD security.7 Antivirus scanning is an expen-
sive operation and using multiple antivirus scanners
requires a lot of CPU and memory. By doing this
ahead of time and doing it once for the benefit of
many, the resource burden has been reduced overall.
Plus, through the power of Grid and CLOUD com-
puting, more antivirus engines can be employed than

an average network gateway or workstation.9 After
all, one should remember what J. Viega from McAffee
says,1 ‘The CLOUD offers several advantages but until
some of its risks are better understood many major
players might hold back’. This review has done that,
that is, while reviewing a range of CLOUD computing
practices, it has also examined risk modeling schemes.
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