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This review article will explore the innovative and popular theme of engineering
modeling and simulation, predominantly in the manufacturing industry and
cybersecurity world, citing severe challenges, advantages and time- and budget
saving solutions and its future. The power of simulation is not an exaggeration but
an understatement. The favorable outcomes since the advent of digital computers
and software revolution could not have been achieved, especially without the
multiple benefits of statistical simulation, which underlies the widespread use
of modeling and simulation in engineering and sciences, stretching from A
(Astronomy) to Z (Zoology). This refers not only to research findings in verifying
a certain piece of theory, such as that of the recently discovered Higgs Boson,
but in testing new products to innovate new discoveries so as to make our
universe a more peaceful place by modeling and simulating the future projects
and taking precautions before disasters occur. The review explores a cross section of
engineering modeling and simulation practices illustrating a window of numerical
examples. © 2013 Wiley Periodicals, Inc.
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INTRODUCTION AND BRIEF HISTORY
TO SIMULATION AND MOTIVATION

Computer modeling and simulation (M&S), as
programs or networks of computers mimicking

the execution of an abstract model of many natural
systems from physical and life sciences to social and
managerial sciences, and primarily engineering, have
become an integral part of digital experimentation.
M&S proves useful to estimate the performance of
complex engineering systems when too prohibitive for
analytical solutions. A simulation is defined as the
reproduction of an event with the use of scientific
models. A model is a physical, mathematical, or
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other logical representation of a system, process,
or phenomenon. Time-independent static Monte
Carlo (MC) or conversely dynamic Discrete Event
Simulation (DES) to manage events in real time for
engineering applications will be reviewed. Taxonomy-
wise, simulated computer models may be stochastic
or deterministic, and dynamic or static, and discrete
or continuous.

Modern computer simulation developed in
parallel with the rapid-growth of computer use
during the development of the Manhattan Project
in WWII to nondestructively model and simulate the
nuclear detonation before it was destructively dropped
on Hiroshima and Nagasaki in Japan in 1945.
Therefore, the history of simulation is interesting and
intriguing. Some earliest pioneers can be observed in
Ref. 1 Lord Rayleigh in 1899 showed that a one-
dimensional random walk without absorbing barriers
could provide an approximate solution to a parabolic
differential equation. In 1908 W.S. Gosset (with a
nickname, Student) used experimental sampling to
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help him towards his discovery of the distribution of
the correlation coefficient and to bolster his faith
in his so-called t-distribution.2 A.N. Kolmogorov
in 1931 showed the relationship between Markov
stochastic processes and certain integro-differential
equations. Stanislaw Ulam at Los Alamos labs
performed simulation in 1945 during the WWII in the
bomb-building Manhattan Project before proposing
the Teller-Ulam thermonuclear weapon design. Ulam
suggested first the ‘Russian Roulette’ and ‘splitting’
methods, for evaluating complicated mathematical
integrals for nuclear chain reactions that later led
to the systematic Monte Carlo methods by von
Neumann, Metropolis and others. John von Neumann
explored the behavior of neutron chain reactions
in fission devices using statistical sampling methods
in 1948 (such as the acceptance–rejection method)
employing the newly developed electronic computing
techniques. Neumann proposed the agent-based Von
Neumann Machine,3 a theoretical machine capable of
reproduction following detailed instructions to copy
itself. Ulam suggested a machine as a collection of
cells on a grid. The idea intrigued von Neumann,
who created the first of the devices later termed,
cellular automaton.4 John Conway constructed the
well-known Game of Life,5 operated in a virtual
world in the form of a two-dimensional checkerboard.
A team headed by N. Metropolis using the ENIAC
Computer in 1948 carried out what’s contemporarily
known as modern Monte Carlo calculations.

Computer simulation has been widely used in
engineering systems to validate the effectiveness of
tentative decisions regarding a new plan or schedule,
or its outcomes, without actually experiencing the
actual conditions, which could in actuality cost more
resources or partial to full destruction such as in
the simulation of the nuclear bomb. In a book
titled, Simulation Engineering, by Jim Ledin in 2001,6

the author outlines his twofold purpose as follows:
(1) simulation engineering (SE) is the application of
engineering discipline to the development of good
simulations. (2) Similarly, SE occurs when simulations
become part of an engineering process when applied
as tools to develop better products and test processes
with a greater efficiency for different types of complex
embedded systems. The latter purpose (2) is the
subject matter of this review article. The IEEE June
2012 Spectrum issue, emphasized that the Modeling
and Simulation effect is a creative and time-saving
topic of interest ranging from automotive engineering
of hybrid vehicles to finding solutions to treating
nuclear waste, and upgrading the nuts and bolts
of the Electrical Power (Smart) Grid and moreover,
supercomputing research.7

GENERIC THEORY—CASE STUDIES
ON GOODNESS OF FIT FOR UNIFORM
NUMBERS

A formal scientific theory of simulation, to verify
a validated model so as to mimic a physical
or a social system, does not exist in terms of
conventional math-statistical theorems and their
subsequent proofs. However, heuristic modeling
formalisms at an advanced level for engineers through
cellular automaton for Monte Carlo and Discrete
Event Simulations are studied by Zeigler et al.8

(Ch. 4), although these formalisms do not lend
themselves to easy algorithmic implementations for
practicing engineers or scientists as this review article
purports to. Moreover, the fundamental process of
verifying sequences of uniform deviates from an
associated generator where Ho: Uniform Random
Sequence is (quasi) random versus Ha: Sequence is
not random, is an accepted technique. For instance,
χ2 tests, such as those by Leven and Wolfowitz9 and
Knuth,10 are popularly well-accepted math-statistical
scientific practices to theorize the verifiability of
uniform random numbers essential to the realm of
statistical simulation. In order to clarify the validation
of the above stated Ho: Random Sequence versus
Ha: Not Random Sequence, the commercial JAVA
code’s uniform number generator will be tested for
randomness, as illustrated in a series of screenshots
from Figures A1–A9 in Appendix A by using Stewart’s
JAVA program to implement Knuth’s technique.11

The results show that by law of large numbers for
only n ≥ N ≈ 50,000; E(θ) → 0.5 with probability
1, for θ ∼ Uniform(0, 1) from the uniform number
generator imbedded in the Java code, ‘Ho: Random
Sequence’ is not rejected. Therefore n = 50,000 runs
is a new standard for attaining quasirandomness; not
5000 anymore as practiced in 1980s.

WHY CRUCIAL TO
ENGINEERING—MANUFACTURING
AND CYBER DEFENSE ISSUES

The power of simulation is prevalent as the audio-
visual Ref 12 favorably explains certain topics
related to production and manufacturing engineering.
In ‘Modeling and Simulation in Manufacturing
and Defense Systems Acquisition’, the Board on
Manufacturing and Engineering Design (BMED)
emphasized the importance of modeling and
simulation in not only making the right decisions
but also incurring fewer expenses.13 Similarly, the
Wychavon (UK) council has adopted manufacturing
industry’s simulation model to reduce waste and
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improve performance.14 Since the US manufacturing
industry is challenged by increased global competition
and price erosion, one can benefit from manufacturing
simulation to eliminate bottlenecks, enhance lean
manufacturing, optimize capacity planning and
optimize production output. In an Annotated Discrete
Event Simulation Bibliography, there exist 325 articles
on manufacturing simulation as cited in Ref 15.
A certain bibliography displays 112 publications
on ‘Load Models for Power Flow and Dynamic
Performance Simulation’ by the IEEE Transactions
on Electric Power Systems.16

On the contrary, there are fewer simulation
studies in cybersecurity-and-defense-related theoret-
ical and applied research. In their 2007 article as
titled, ‘Cyber Attack Modeling and Simulation for
Network Security Analysis’, the authors Kuhl et al.
discuss a simulation modeling approach to represent
computer networks and intrusion detection systems
(IDS) to efficiently simulate cyber-attack scenarios in
order to test and evaluate cyber security systems.17

You-Tube-based audio-visual Cybersecurity Simula-
tion roundtable18 underlines the power of simulation
in cybersecurity scenarios. Under ‘War game reveals
US lacks cyber-crisis skills’ in a war game,19 spon-
sored by a nonprofit group and attended by former
top-ranking national security officials, laid bare that
the US government lacks answers to such key ques-
tions. Former Clinton press secretary Joe Lockhart
said that people would be scared by the simulation
but he added, ‘. . .that’s a good thing.’ Sahinoglu in his
2007 Wiley textbook, Trustworthy Computing: Ana-
lytical and Quantitative Engineering Evaluation,20

considers modeling and simulation of individual com-
ponents and systems toward assessment of security
risk, in addition to his publications where theoret-
ical models are confirmed using Monte Carlo and
Discrete event simulation runs.21–24 Further, certain
manufacturing- and cybersecurity-themed examples
will be reviewed through working details of how the
modeling should be validating the physical model and
the subsequent simulation computationally verifying
the solutions accurately and cost effectively. These
reviews are the tips of the iceberg, as industries will
continue to design and discover new products and
services by M&S.

Figure 1 displays the interaction between
the process of building a model by focusing
on the interplay between (1) experimental results,
(2) simulation results, and (3) theoretical predictions
as displayed in Ref 25. A favorable example of this
interplay is presented in a recent WIREs article titled
Cloud Computing26 (Figure 8, p. 55), which displays
an experimental scenario for a trivial Cyber Cloud.

On the other hand Ref 26 (Figure 9, p. 57) outlines
the Markovian theoretical predictions followed by the
simulation results for the same scenario of two 1-GB
units serving a constant load of 1.5 GB for 13
cycles. The resulting availability of this small Cloud:
(1) 0.307 for Experimental, (2) 0.305 for Simulation
after 1 million runs, or trials and (3) 0.331 for Markov
Theoretical, allowing a negligible error content, which
diminishes to less than 3% as the size of the experiment
increases from a few to many hundreds of units. In
the event of large cyber CLOUDS such as those with
398 units, the authors showed that the experimental
approach was infeasible, and theoretical result was not
mathematically tractable. However, supercomputer-
driven programming worked for days regarding the
basic two-state assumptions, crunching 2398 (�10100)
Markov states to 93.8% reliability. DES result was a
satisfactorily comparable 90.5%.

A CROSS SECTION OF MODELING
AND SIMULATION ISSUES IN
MANUFACTURING

Simulation use in production is not new. For the sake
of a few examples, various authors from 25 years
ago published articles on simulating flexible man-
ufacturing systems (FMS), machine utilizations and
production rates, and modeling of Automated Manu-
facturing Systems (AMS).27–29 Given the advances in
pervasive computing regarding communication net-
works, as well as recently popularized large scale
cloud computing in cyber networks; quantitative risk
assessment of a manufacturing unit and their network
availability have become challenging tasks. An often
overlooked fact is that many real-life grid units such
as routers or servers in cyber physical systems to the
manufacturing assemblies in automotive or avionics,
etc. and the intricate telephony networks (wired or
wireless), and water-supply networks or hydroelectric
dams, do not operate in an idealized simple setting
of either full or zero capacity. This fact therefore
necessitates the inclusion of degrees of derated (in-
between UP and DOWN states) capacity. Because
of lack of closed-form solutions in the three-state
model including DERATED as opposed to that of the
conventional UP-and-DOWN dichotomous two-state
model, a summary of three or multistate system infer-
ential analysis will be reviewed by using Monte Carlo
simulations. This process will employ the empirical
Bayesian principles to estimate the full and derated
availability probability distributions. The historical
failure and repair data, or operating (full or der-
ated) and nonoperating hours, as the input data, will
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FIGURE 1 | Computer modeling and interplay between experiments, simulation, and theory.25

be used along with prior parameters for an empiri-
cal Bayesian analysis. The results satisfactorily lend
themselves to statistical inference for multiple states
other than the traditional binary assumption (UP or
DOWN), an outcome which can prove very useful to
the manufacturing industry. In the past, various arti-
cles have studied a similar problem. For instance, ‘A
Hybrid Markov system dynamics approach for avail-
ability analysis of degraded systems’ by Rao et al30;
similarly, Lins and Droguett study ‘Multi-objective
Optimization of Availability and Cost in Repairable
Systems Design Via Genetic Algorithms and Discrete
Event Simulation.31 ‘Reliability and Availability Anal-
ysis of Three-state Device Redundant Systems with
Human Errors and Common-cause Failures’, by Shah
and Dhillon studies somewhat similar but still differ-
ent topics.32 The primary difference between the above
listed three references and this review article is the
empirical Bayesian treatment of the three states to esti-
mate their probability distributions by Monte Carlo
simulations based on the Sahinoglu–Libby probabil-
ity density function, originally derived independently
by both Sahinoglu and Libby in 1981.33–37 The
closest among these three articles, that is, by Rao
et al.30 uses only four transition rates in a three-state
Markov model whereas Sahinoglu’s model uses all six
transitions.38,39 However, this review article’s simula-
tion approach is even more powerful and flexible as
the application can be extrapolated based on identical
principles to four or more states, whereas reference
by Rao et al.30 deals solely with differential equations
limited in scope. Others, Lins et al.31 and Shah et al.,32

are on slightly different but not identical topics; all of
which do not employ modeling and simulation tech-
niques or generate closed form statistical probability
density function (p.d.f.) expressions and derivations.

Modeling and Simulation of Multistate
Production Units and Systems
in Manufacturing
Most research articles or books on reliability theory
are devoted to traditional binary reliability models
allowing for only two possible states for a system
and its components: perfect functionality or complete
failure. However, many real-world systems are
composed of multistate components which have
different performance levels and several failure modes
with varying effects on the entire system performance.
Such systems are called multistate systems (MSS).40

Examples of MSS are cyber systems where the unit
performance is characterized by the data processing
speed or server gigabyte capacity and similar to
electric power systems, where the generating unit
performance is depicted by its generating capacity.
In the electric power supply system of generating
facilities, each generator can function at different
levels of capacity with a given probability. This
may result from the outages of several auxiliaries
such as pulverizers, water pumps, fans, boilers, etc.
Billinton and Allan41 describe a three state 50 MW
generating unit. The performance rates (generating
capacity) corresponding to these three states and
probabilities of the three states which sum to unity
are presented as follows: Probability of State 1
(50 MW capacity) = 0.960, Probability of State 2
(30 MW capacity) = 0.033 and Probability of State 3
(0 MW capacity) = 0.007. Therefore, the reliability
analysis of MSS is much more complex compared
to binary-state systems. From the mid-1970s until
now, various books and research articles focusing
on MSS reliability were published.20,40–45 However,
these works are deterministic, and not probabilistic,
thus not lending themselves to probability distribution
functions other than a single summary measure.
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Therefore statistical inference cannot be conducted.
This article reviews methodology for the estimation
of the probability distributions of three-state (now
including a new derated or degraded state beyond
the binary assumption of UP or DOWN) repairable
hardware units or components by using Monte
Carlo simulations in employing the statistical random
number generation techniques.

The power of simulation once again flexes its
muscle as a favorable exit out of this theoretical
impasse. The Monte Carlo technique remains the only
available feasible way to solve the proposed three-state
problem, whose math-statistical closed-form solution
does not actually exist. This is mainly because the
three-state Markov model’s random variables’ (UP,
DOWN, DER) probability distributions cannot be
derived through math-statistical transformations due
to mathematical intractability and lack of sufficient
statistical theory. The probability density function
of the Forced Outage Rate (FOR) was earlier
analyzed in a textbook by the primary author, who
designated that the Sahinoglu–Libby (SL) probability
model can be used if certain underlying assumptions
hold.20,33–35 Libby and Novick independently have
studied multivariate generalized beta distributions for
utility assessment; however their analysis was for only
two-states similarly, not for multistate hence the term,
G3B: Generalized 3-Parameter Beta.36,37 The failure
and repair rates were taken to be the generalized
gamma random deviates where the corresponding
gamma shape and scale parameters, respectively, were
not equal. The two-state SL density was shown
to default to that of a standard two-parameter
beta density function when the shape parameters
are identical. The stochastic method proposed was
superior to estimating availability by dividing total
uptime by exposure time. Examples had shown the
validity of this method to avoid over- or under-
estimation of availability when only small samples
or insufficient data exist for the historical life cycles
of units. In this article, however, additionally we
shall also review, similar to the two-state SL, a
computational three-state simulation model. Because
of the infeasibility of closed-form solutions, the
analysis will be carried out using Monte Carlo
simulations, obeying the Bayesian principles similar
to Chapter 5 of the author’s textbook.20 In studying
large capacity production units, it is necessary to
consider the probabilities associated with one or more
forced derated states rather than accepting the unit
being either available or unavailable, according to
Billinton.44 Following the Monte Carlo simulations,
analytical p.d.f.s of the multiple states will be
approximated using their associated moments.

Two-State Sahinoglu–Libby Probability
Model of Production Units (Closed-Form
Solution)
In using the distribution function technique,
the p.d.f. of FOR = q = λ/(λ + μ) is obtained
first by deriving its cumulative density function
(c.d.f.), i.e. GQ(q) = P(Q ≤ q) = P(λ/(λ + μ) ≤ q).
Then, taking its derivative to obtain gQ(q) as per
Eqs (5A.1)–(5A.18) in Appendix 5A, on pp. 26–32 of
Ref 20 and Ref 33, p. 1487, and also in Ref 34; gQ(q)
is as follows:

gQ(q) = �(a + b + c + d)
�(a + c)�(b + d)

× (ξ + xT)a+c(η + yT)b+d(1 − q)b+d−1qa+c−1

[η + yT + q(ξ + xT − η − yT)]a+b+c+d

(skipping steps)

�(α + β)
�(α)�(β)

(1 − q)β−1qα−1
[

1
1 + q(L − 1)

]α+β

Lα.

(1)

Note that gQ(q) is the p.d.f. of the random
variable Q = FOR, where α = a + c, β = b + d,
β1 = ξ + xT , and β2 = η + yT ; and 0 ≤ q ≤ 1. If
L = (β1/β2) for SL (α, β, L) or β1 = β2, the usual
two-parameter beta p.d.f. is obtained. An alternative
original derivation of the same p.d.f. termed under
generalized multivariate beta distribution is given by
Libby in 1981 and 1982.36,37 The expression in Eq. (1)
can also be reformulated in terms of SL(α = a + c,
β = b + d, L = (β1/β2)), as follows:

gQ(q) = Lα+cqα+c−1(1 − q)b+d−1

B(b + d, a + c)[1 − (1 − L)q]a+b+c+d
, (2)

where

B(b + d, a + c) = �(a + c)�(b + d)
�(a + b + c + d)

, and L = ξ + xT

η + yT
.

(3)

Note if L = 1, Sahinoglu-Libby p.d.f. reduces
to a standard Beta (α, β) p.d.f. See Figure 2 for
‘r = availability’ and ‘q = unavailability’ confidence
plots where r = 1 − q. Densities of SL (or G3B)
distributions have been cited in Refs 33–37 for a
variety of L values. From a strictly mathematical
point of view, the presence of the parameter L allows
the SL p.d.f. to take a variety of shapes besides
the standard Beta(α, β) where L = 1. For example,
when α = β, the standard Beta(α, α) is symmetric
with a mean at 0.5. However, the SL (α, α, L)
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FIGURE 2 | Given the input table, the p.d.f. of the two-state SL is plotted for UP (r) and DOWN (q) for 90% confidence analytically showing
mode (m), mean (E) with upper & lower confidence bounds.

distribution is not necessarily so, and can be skewed
positively or negatively, depending on L > 1 and
L < 1 respectively, because the mode, skewness, and
kurtosis of SL random variable now also depend on L.
For 0 < L < 1, the SL p.d.f. stays below the plot of the
related standard Beta near zero but crosses the latter
to become the greater of the two p.d.f.s at a point36,37:

y0 = [1 − Lα1/(α1+α2)]−1 − (1 − L)−1. (4)

The reverse action holds true for L > 1 with the
same crossing point, y0. The major drawback to the
distribution is that there is no closed form for finite
estimates of the moments. The moment generating
function for the univariate SL distribution is an infinite
series.36,37

Three-State Sahinoglu Probability Model of
Production Units (Monte Carlo Simulation)
In studying large capacity generation (power) or
production (or cyber-physical) units, it may be
necessary to consider the probabilities associated
with one or more forced derated-outage states as

in multistate, rather than considering the unit as being
either available or unavailable.40–42,44,45 In summary,
there are gray areas or in-between capacities which
are called derated or degraded states. However in this
review article, we will only consider a single derated
state rather than multiple ones, which may well exist
in practice such as in 50%, 60%, or 75% derated
capacity. But now, we have not only full-FOR but
also derated-FOR (or DFOR), that will be equal to the
total derated operating time over the total exposure
time. That is, DFOR = DER time/(UP time + DER
time + DOWN time). It is also well documented that
any calculated FOR or DFOR is not only a constant
but also a specific single realization of its random
variable.20 The probability density function of the
FOR by empirical Bayesian analysis was identified
in Section Two-State Sahinoglu-Libby Probability
Model of Production Units (Closed-Form Solution)
to be the Sahinoglu–Libby (SL) probability density,
where certain underlying assumptions hold. However,
we shall review above and beyond a traditional
closed-form two-state SL; namely, a three-state SL
where the transition rates are gamma distributed (see
derivations in subsections of Three-State Sahinoglu
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FIGURE 3 | Three-state Markov diagram of a repairable hardware
unit with UP, DOWN and DER states.

Probability Model of Production Units (Monte Carlo
Simulation)). Let us examine and review the following
state space diagram in Figure 3 by Billinton from his
textbook.44

Let λ = transition rate from UP (fully opera-
tional) to DOWN (forced outage) state. Let μ =
transition rate from DOWN to UP state; δ =
transition rate from UP to DER (partially forced
outage) state; β = transition rate from DER (par-
tially forced outage) to UP state; α = transition rate
from DER to DOWN state; γ = transition rate from
DOWN to DER state. Using Figure 3 given, by chang-
ing to the Greek variables from the Latin originals
(a–f) cited in the same reference44 (p.156, Fig. 4.2);
the time-dependent but steady state probabilities of
occupying one of the three states are given as follow
from (5)–(7), assuming negative exponential densities
for each state’s sojourn time, which will converge to:

P(UP) = FOR = μβ + μγ + αβ

DENOMINATOR
, (5)

P(DERATED) = DFOR = δμ + δα + λμ

DENOMINATOR
,

(6)

P(DOWN) = 1 − P(UP) − P(DERATED)

= λβ + λγ + δγ

DENOMINATOR
, (7)

where

DENOMINATOR = μβ + μγ + αβ + λβ + λγ

+ δμ + δα + λμ + δγ. (8)

A closed form solution of the three-state SL is
intractable and analytically impossible in this setting
with six random variables, as compared solely to the
two variables in Section Two-State Sahinoglu-Libby
Probability Model of Production Units (Closed-Form

Solution). We will therefore have to simulate the
P(UP), P(DER) and P(DOWN) from Eqs (5)–(7) by
generating the recursive Monte Carlo simulated devi-
ates of the state transition rates. Empirical Bayesian
analysis will be pursued through deriving first the con-
ditional posterior densities of the six transition rates
from subsections of Three-State Sahinoglu Probability
Model of Production Units (Monte Carlo Simulation),
and using random uniforms for generating the tran-
sitions that constitute the probabilities in Eqs (5)–(7).
See Figure 4 for a sample draft scenarios to illustrate
transitions of Figure 3.

UP-to-DOWN Failure Transition Rate (λ), for
example, from x1 to w1, or x2 to w2 in Figure 4
Let a = number of occurrences of UP (operating)
times before DOWN (recovery)

Xi ∼ λe−λX.

xT =
a∑
1

Xi = total UP (operating) times before

going DOWN (recovery) for ‘a’ such occurrences.
λ = full UP-to-DOWN rate.
c = shape parameter of gamma prior for the full

failure rate λ.
ξ = inverse scale parameter of gamma prior for

the full failure rate λ.
Now let the failure rate, λ have a gamma prior

distribution:

θ1(λ) = ξ c

�(c)
λc−1 exp(−λξ ), λ = 0. (9)

The joint likelihood of the UP-time random variables
is

f (x1, x2, . . . , xa|λ) = exp(–xTλ), (10)

the joint distribution of data and prior becomes:

k(x, λ) = f (x1, x2, . . . ., xa, λ)

= ξ c

�(c)
λa+c−1 exp[−λ(xT + ξ )]. (11)

Thus, the posterior distribution for the random
variable λ is

h1(λ|x) = ξ c

�(c)
λa+c−1 exp[−λ(xT + ξ )]

÷ ξ c

�(c)
(xT + ξ )−1�(a + c)

= 1
�(a + c)

(xT + ξ )λa+c−1 exp[−λ(xT + ξ )],

(12)
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FIGURE 4 | A sample illustration of feasible transitions
from Figure 3 implemented to subsections of Three-State
Sahinoglu Probability Model of Production Units (Monte
Carlo Simulation).

y1 y2 y3w1 w2

s1 u1 u2 s2

x1 x2z1 z2

Time

State

which is also distributed as Gamma[a + c,
(xT + ξ )−1]. Note that x is a vector.

DOWN-to-UP Recovery Transition Rate (μ), for
example, from y1 to x1, or y2 to z1 in Figure 4
Let b = number of occurrences of DOWN (recovery)
times before UP (operating)

Yi ∼ μe−μY

yT =
b∑
1

Yi = total DOWN (recovery) times

before going UP for ‘b’ many such occurrences
μ = full recovery (DOWN-to-UP) rate
d = shape parameter of gamma prior for the full

recovery rate μ

η = inverse scale parameter of gamma prior for
the full recovery rate μ

Now let the full recovery rate, μ, have a gamma
prior distribution:

θ2(μ) = ηd

�(d)
μd−1 exp(−μη), μ > 0. (13)

The joint likelihood of the DOWN-time random
variables is

f (y1, y2, . . . , ya|μ) = μbexp(−yTμ). (14)

The joint distribution of data and prior becomes:

k(y, μ) = f (y1, y2, . . . , yb, μ)

= ηd

�(d)
μb+d−1 exp[−μ(yr + η)]. (15)

Thus, similarly skipping two intermediate steps,
the posterior distribution for μ is

h2(μ|y) = 1
�(b + d)

(yT + η)μb+d−1 exp[−μ(yT + η)],

(16)

which is also distributed as Gamma[b + d, (yT +
η)−1]. Note that y is a vector.

UP-to-DER Failure Transition Rate (δ), e.g.
from z1 to u1, or z2 to s2 in Figure 4
Let o = number of occurrences of UP times before
DER

zT =
o∑
1

Zi = total UP times before going DER

for ‘o’ many of such occurrences.
Zi ∼ δeδZ.
δ = UP-to-DER failure rate.
e = shape parameter of gamma prior for the

UP-to-DER failure rate δ.
� = inverse scale parameter of gamma prior for

the UP-to-DER failure rate δ.
Now let the UP-to-DER failure rate δ have a

gamma prior distribution:

θ3(δ) = �e

�(e)
δe−1 exp(−δ�), δ > 0. (17)

Thus, similarly skipping two intermediate steps,
the conditional posterior density of δ becomes:

h3(δ|z) = 1
�(o + e)

(zT + �)δo+e−1 exp[−δ(zT + �)],

(18)

which is also distributed as Gamma [o + e, (zT +
�)−1]. Note that z is a vector.

DER-to-UP Recovery Transition Rate (β), for
example, from u1 to x2, or u2 to z2 in Figure 4
Let k = number of occurrences of DER times before
UP

uT =
k∑
1

Ui = total DER failure times before

going UP for ‘k’ many of such occurrences.
Ui ∼ βe−βU.
β = DER-to-UP recovery rate.
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φ = shape parameter of gamma prior for the
DER-to-UP recovery rate β.

f = inverse scale parameter of gamma prior for
the DER-to-UP recovery rate.

Now let the DER-to-UP recovery rate β have a
gamma prior distribution:

θ4(β) = φf

�(f )
βf−1 exp(−βφ), β > 0. (19)

Thus, similarly skipping two intermediate steps,
the conditional posterior density of β:

h4(β|u) = 1
�(k + f )

(uT + φ)βk+f−1 exp[−β(uT + φ)],

(20)

which is also distributed as Gamma [k + f , (uT +
φ)−1]. Note that u is a vector.

DER-to-DOWN Failure Transition Rate (α); for
example, from s1 to y2, or s2 to y3 in Figure 4
Let j = number of occurrences of DER failure times
before DOWN

sT =
j∑
1

Si = total DER failure times before

going DOWN for ‘j’ many such occurrences.
Si ∼ αe−αS.
α = DER-to-DOWN failure rate.
g = shape parameter of gamma prior for DER-

to-DOWN failure rate α.
ψ = inverse scale parameter of gamma prior for

DER-to-DOWN failure rate α.
Now let the DER-to-DOWN failure rate α have

a gamma prior distribution:

θ5(α) = ψg

�(g)
αg−1 exp(−αψ), α > 0. (21)

Thus, similarly skipping two intermediate steps,
the conditional posterior density of α:

h5(α|s) = 1
�(j + g)

(sT + ψ)αj+g−1 exp[−α(sT + ψ)],

(22)

which is also a Gamma [j + g, (sT + ψ)−1]. Note that
s is a vector.

DOWN-to-DER Recovery Transition Rate (γ ),
e.g. from w1 to s1, or w2 to u2 in Figure 4
Let p = number of occurrences of DOWN times
before DER

wT =
p∑
1

Wi = total DOWN times before going

DER for ‘p’ many such occurrences.
Wi ∼ γ e−γ W .
γ = DOWN-to-DER recovery rate.
h = shape parameter of gamma prior for the

DOWN-to-DER recovery rate γ .
π = inverse scale parameter of gamma prior for

the DOWN-to-DER recovery rate γ .
Now let the DOWN-to-DER recovery rate γ

have a gamma prior distribution:

θ6(γ ) = πh

�(h)
γ h−1 exp(−γπ ), γ > 0. (23)

Thus, similarly skipping two intermediate steps,
the conditional posterior density of γ :

h6(γ |w) = 1
�(p + h)

(wT + π )γ p+h−1

exp[−γ (wT + π )], (24)

which is also distributed as Gamma [p + h,
(wT + π )−1]. Note that w is a vector.

Statistical Simulation of Three-State Units to
Estimate the Density of UP, DOWN, and
DER
Table 1 displays the input data as tabulated for the
following example covering the first five episodes of
six different sojourn times (see Figures 3 and 4).

The cumulative probabilities of states are
calculated by Monte Carlo Simulation method using
input from Table 1 as follows in Tables 2–4 for
UP, DER and DOWN states in 100, 1000, and
10,000 simulation runs, respectively. Figures 5–7
using Eqs (5)–(7) will convert these tabulations
into cumulative frequency plots utilizing the six
transitions of Figure 3 in subsections of Three-State

TABLE 1 An Input Data Example for the Monte Carlo Simulations of
UP, DOWN, and DER States for the first 5 episodes (#Events)

#Events
Exposure

Time
Shape

Parameter
Scale

Parameter
Transition

Rate

a = 5 XT = 25 c = 0.2 ξ = 1 λ

b = 5 YT = 5 d = 2 η = 0.5 μ

o = 5 ZT = 10 e = 1 � = 0.5 δ

k = 5 UT = 20 f = 0.5 Ø = 1 β

j = 5 ST = 10 g = 1 ψ = 0.5 α

p = 5 WT = 15 h = 2 π = 1 γ
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TABLE 2 UP STATE EQ(5)

Cumulative Density <0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8

100 simulation runs

Total count 0 2 19 62 92 100 100 100

Cumulative Probability 0 0.02 0.19 0.62 0.92 1 1 1

1000 simulation runs

Total count 0 21 185 597 885 978 998 1000

Cumulative Probability 0 0.021 0.185 0.597 0.885 0.978 0.998 1

10,000 simulation runs

Total count 0 187 2000 5874 8815 9816 9984 10,000

Cumulative Probability 0 0.0187 0.2 0.5874 0.885 0.978 0.998 1

TABLE 3 DERATED STATE EQ(6)

Cumulative Density <0.05 <0.1 <0.15 <0.2 <0.25 <0.3 <0.35 <0.4 <0.45

100 simulation runs

Total count 0 10 43 80 97 100 100 100 100

Cumulative Probability 0 0.1 0.43 0.8 0.97 1 1 1 1

1000 simulation runs

Total count 0.34 181 552 829 954 984 995 998 999

Cumulative Probability 0.034 0.181 0.552 0.829 0.954 0.984 0.995 0.998 0.999

10,000 simulation runs

Total count 34 1893 5894 8543 9545 9882 9960 9989 9999

Cumulative Probability 0.0034 0.1893 0.5894 0.8543 0.9545 0.9882 0.996 0.9989 0.9999

TABLE 4 DOWN STATE EQ(7)

Cumulative Density <0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7

100 simulation runs

Total count 0 5 19 66 90 100 100

Cumulative Probability 0 0.05 0.19 0.66 0.9 1 1

1000 simulation runs

Total count 1 48 252 639 902 995 1000

Cumulative Probability 0.001 0.048 0.252 0.639 0.902 0.995 1

10,000 simulation runs

Total count 13 364 2435 6161 9032 9899 10,000

Cumulative Probability 0.0013 0.0364 0.2435 0.6161 0.9032 0.9899 1

Sahinoglu Probability Model of Production Units
(Monte Carlo Simulation) covering Eqs (9)–(24).

Plots shown in Figure 8 are the extrapolated
JAVA versions of the EXCEL applications in

Figures 5–7. Consequently a more detailed graphical
JAVA version of the probability density plots
with n = 100,000 simulation runs are displayed in
Figures 9 and 10 to illustrate statistical centrality
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FIGURE 5 | P(UP) Cumulative reliability plot with 10,000
Monte Carlo simulation runs.

0.1 0.2 0.3 0.4 0.5

Reliability (r )

0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

P
ro

ba
bi

lit
y 

(U
p 

<
 r

)

0.8

1

1.2
10,000 Simulations for P(UP)

Series1

FIGURE 6 | P(DER) Cumulative reliability plot with
10,000 Monte Carlo simulation runs.
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FIGURE 7 | P(DOWN) Cumulative reliability plot with
10,000 Monte Carlo simulation runs.
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and location measures. The input data covering
the first n = 5 events or episodes of each of six
different sojourn times, as a hypothetical example
in Table 1 are symbolically displayed in Figure 4,
as derived from Markov state diagram shown in
Figure 3. Consequently, results of Tables 2–4 and
Figures 5–7 are plotted for each of the three states

(UP–DOWN–DER) c.d.f. in Figure 8. Given the
input tabulation in Table 1, the JAVA program will
compute the popular statistical measures of three
random variables as plotted in Figures 9 and 10.
Probability density functions of the three states from
Eqs (5)–(7) with a mean and a standard deviation,
obtained by incremental piecewise calculations in
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FIGURE 8 | The input data in Table 1, and simulation results in Tables 2–4 and Figures 5–7 display the cumulative reliability plots of the three
states for UP (r), DER (d), and DOWN (q).
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FIGURE 9 | Given the input table on the l.h.s. column, the p.d.f.s of the three states are plotted for UP (r), DER (d), and DOWN (q) for a 90%
confidence level showing mode (m), mean (E) with upper & lower confidence as centrality measures for n = 100,000 simulation runs.

Figure 8 from the c.d.f.s of Figures 5–7 will follow:

f (UP) ∼ Normal(0.267, 0.107),

f (DER) ∼ Normal(0.433, 0.1) 46 and

f (DOWN) ∼ Normal(0.299, 0.106).

Note that the 90% confidence limits for the
three Markov states computed in Figure 9 are as
follow:

{UPu = 0.12, UPL = 0.46}, {DERu = 0.27,
DERL = 0.60}, {DOWNu = 0.14, DOWNL = 0.49},
respectively.
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UP (r), DER (d), and DOWN (q).

Also note the first (Q1) and third (Q3) quartiles
as location measures, computed in Figure 10 are as
follow:

{UPQ1 = 0.18, UPQ3 = 0.33}, {DERQ1 = 0.36,
DERQ3 = 0.50}, {DOWNQ1 = 0.22, DOWNQ3 =
0.37}, respectively.

Means (E) ≈ Medians (M) ≈> Mode (m) for
UP, DER, and DOWN are nearly identical. That is,
E: {0.267, 0.433, 0.299}, M: {0.25,0.43, 0.29}, and m:
{0.21, 0.38,0.27} will result in a quasisymmetric plot.
That is, Mean (E) ≈ Median (M) where a spike or
two for the Mode (m) will not violate the symmetric
appearance, as evident in Figures 9 and 10. Note,
Mean = E(q) and Median = q0.5 if loss functions
are assumed to be squared error and absolute error
respectively, where mode is the maximum likelihood
estimator. This follows from the fact that E(q − q̂)2,
if it exists, is a minimum when q̂ = E(q), that is, the
mean of the conditional (posterior) distribution of q.
Then E(q) is the Bayes solution:

E(q) =
∫ 1

0
qgQ(q)dq. (25)

Similarly according to Hogg and Craig46

(p. 262), the median of the random variable Q is the

Bayes estimator using an informative prior when the
loss function is given as L(q, q̂) = |q − q̂|. If E(|q − q̂|)
exists, then q̂ = q0.5 minimizes the loss function, i.e.,
the median of the conditional posterior distribution
of q. The median is resistant to changes. Then, q0.5 or
median of q, that is, qM is the Bayes solution as the
50th percentile or 0.5 quantile, or second quartile for
q, as follows:

0.5 =
∫ q0.5

0
gQ(q)dq. (26)

How to Generate Random Numbers from
Two-State Sahinoglu–Libby p.d.f. to
Simulate Production Systems
Assume the random variables, y ∼ Gamma (α1 =
a + c, β1 = ξ + xT), and rv, z ∼ Gamma (α2 = b + d,
β2 = η + yT), where the random variable q = y/

(y + z) has the p.d.f. and c.d.f. respectively,

gQ(q) = �(m′ + n′)
�(m′)�(n′)

a′m′
b′n′ (1 − q)m′−1qn′−1

[a′ + q′(b′ − a′)]m′+n′ ,

(27)
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GQ(q) = 1 − GF2m′,2n′

[
a′n′

b′m′ (q
−1 − 1)

]

= P[F2m′, 2n′ > C1 = (q−1 − 1)]. (28)

Re-substituting for n′ = a + c, m′ = b + d, b′ =
ξ + xT and a′ = η + yT , we obtain for (27)

gQ(q) = �(a + b + c + d)
�(a + c)�(b + d)

(η + yT)b+d(ξ + xT)a+c

× (1 − q)b+d−1qa+c−1

[η + yT + q′(ξ + xT − η − yT)]a+b+c+d
,

(29)

where Snedecor’s F-Distribution used in Eq. (28) can
be found in Ref 47. By the inverse transform approach,
find the constant C1 = inverse of F2m′, 2n′(1 − ui) as
in Eq. (28), by equating the c.d.f. value GQ(q) to a
random uniform number, ui for i = 1, . . . , N (large),
as follows.

C1 = a′n′

b′m′ (q
−1 − 1) → q∗

= a′n′

a′n′ + C1b′m′ , 0 < q∗ < 1, (30)

where q* is the SL (α = a + c, β = b + d, L = β1/β2)
random deviate for q (unavailability). Note, ui are
uniform (0,1) for i = 1, . . . , N (large). Figure 11
shows relationships between popular distributions for
statistical simulations.

Example of SL Simulation for Modeling
Network of 2 Two-State (UP-DN) Units
Given the following simplest series system of two
identical components in Figure 12, whose default
operational probability for each is P(UP) = 0.9 and
hence P(System) = 0.92 = 0.81. We now force these
units have their unavailability r.v. distributed with
SL displayed as in Figure 2’s l.h.s. column, where
gQ(q) is formulated as follows: SL(α = a + c, β =
b + d, L = (ξ + xT)/(η + yT)) = SL(α = 10 + 0.02 =
10.02, β = 10 + 0.1 = 10.1; L = (1 + 1000)/(1 +
111.1) = (1001/112.1) = 9.7234). Use the SL ran-
dom deviate simulator for q in Eq. (30), where qi are
to be independently SL distributed (Table 5). Histor-
ical failure and repair data are given in Figure 2. The
flat deterministic outcome is 0.92 = 0.81 whereas SL-
distributional input-output relationship is unknown
due to the closed-form derivation of the prod-
uct of random variables being not available. Since
Eqs (25) and (26) are not closed form solutions
and tedious numerical integration is needed, Monte

Carlo simulation can be the only solution for much
larger networks if analytical tools are not available45

(pp. 196–197, Figures 4 and 5) where analytical inte-
gration becomes an impossible task.

Example of Another SL Simulation for
Modeling Network of 7 Two-State (UP-DN)
Units
For the sake of a convenient example, a feasible and
probable seven-node complex architectural style is
taken20 (p. 254) with failure and repair history includ-
ing the prior parameters displayed on the l.h.s. with
10 each ups and downs lasting 1000 and 111.11 h,
respectively, in Figure 13. The author assumes for
the hypothetical control architecture an identical SL-
distribution for its unavailability as displayed in
Table 6 employing historical data for its components
simulated 1000 times in 100-tuples of networks. This
means 100,000 simulation runs overall. The analyti-
cal result being unknown for a complex system as the
7-node network depicted in Figure 13, the resulting
simulation is 0.785 as in Table 6.

In the June 2012 issue of the IEEE Computer
with ‘Computing in Asia’ as the cover feature, an
article titled ‘Computing for the Next-Generation
Automobile’ displays three hybrid vehicle architec-
tural styles: series, parallel and series-parallel, and then
the (Toyota) Prius integrated THS II control architec-
ture. It is mentioned that most vehicles today come
with more than 50 embedded computer components,
called electronic control units (ECUs)7 (pp. 34–35).

A REVIEW OF MODELING AND
SIMULATION IN CYBERSECURITY

Modeling and simulation (M&S) is a vital tool
that can be leveraged for process improvement, and
technology/capability development and evaluation. It
is the process of designing a model of a system
and conducting simulated experiments to preview
and predict system behavior and evaluate optimal
strategies for system operation. A short review of
approaches will be covered in the world of cyber
security on MC or DES. With the cyber security
breaches rampant in the world, some of the most
creative solutions to counteract these problems can
be obtained by digital simulation faster, safer and
cheaper than they can be resolved in the physical
labs. In his related article, Rinaldi highlights M&S
as a crosscutting initiative to increase the security
of critical infrastructures.48 Their Strategy states that
modeling, simulation, and analysis must be employed
to ‘develop creative approaches and enable complex
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decision support, risk management, and resource
investment activities to combat terrorism at home’.
Rinaldi concludes that the multidisciplinary science

of interdependent infrastructures is immature, and
requires M&S to mature it, and adds that they
are developing, among others, at Sandia Labs the
following techniques. Aggregate Supply and Demand
(What-if Analyses), Dynamic Simulations, and ABM,
which at a macro level similar to cellular automata,
is out of scope for this review. Some examples
of M&S and DES, in the cybersecurity field will
follow.
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FIGURE 13 | Complex network of seven units with input data, where source: s = 1 and target: t = 7.

TABLE 5 Simulation of a Simple Series Network using
SL-Distributed Unit Unavailability in figure 12

79,617 successes out of 100,000 simulation runs.
NETWORK RELIABILITY = 0.79617
NETWORK UNRELIABILITY = 0.20383
Each of the 100 networks simulated 1000 times totaling to
100,000 runs in 65.444 seconds

TABLE 6 Simulation of a Complex Production Network using
SL-Distributed Unit Unavailability in figure 13

78,476 successes out of 100,000 simulation runs.
NETWORK RELIABILITY = 0.78476
NETWORK UNRELIABILITY = 0.21524
Each of the 100 networks simulated 1000 times in 148.36
seconds

Monte-Carlo Value-at-Risk Approach by
Kim et al. in Cloud Computing
Based on today’s volatile market conditions, the
ability to generate accurate and timely risk measures
has become critical to operating successfully, and
necessary for survival. Value-at-Risk (VaR) is a
market standard risk measure used by senior
management and regulators to quantify the risk
level of a firm’s holdings. However, the time-critical
nature and dynamic computational workloads of
VaR applications make it essential for computing
infrastructures to handle bursts in computing and
storage resources needs. This requires on-demand
scalability, dynamic provisioning, and the integration
of distributed resources.

A VaR calculation will typically start after
the end of the trading day, when market data
and final positions have been verified. It must
be complete, and updated risk numbers must be
available, before the start of the next trading day. As
the number and complexity of positions change, the
computational requirements for the calculation can

change significantly, however the completion deadline
of the beginning of the next trading day remains fixed.
Furthermore, as market conditions change, a firm may
want to vary the number of Monte Carlo scenarios run
(and thus the resolution of the calculation), which will
add additional variability to the computation time.
Specifically, the authors demonstrate how the Comet
Cloud autonomic computing engine can support
online multiresolution VaR analytics, a candidate
for Cloud architecture by integrating of private and
Internet cloud resources.49

Monte Carlo and Discrete Event Simulations
in Sahinoglu’s Security-Meter (SM) Risk
Model
Four examples will be studied regarding Monte Carlo
(MC) and Digital Event Simulation in the field of
Cybersecurity.

Example for Security Meter Risk Modeling and
Simulation
Assume two vulnerabilities and two threats in a
2 × 2 × 2 set up as in Figure 14.20,22

Let X (total number of cyber-attacks detected)
= 360/year and let X11 = 98, X12 = 82, X21 = 82,
X22 = 98.

Let Y (total number of attacks unde-
tected) = 10/year and let Y11 = 2, Y12 = 3, Y21 = 3,
Y22 = 2.

When we keep Figure 14 in sight, we obtain
the risk ratios and ECL (Expected Cost of Loss) as
follow.

P11(threat 1 probability for vulnerability 1)

= (X11 + Y11)/(X11 + Y11 + X12 + Y12) = 100
185

= 0.54, (31)
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T1 = 0.54 LCM = 0.02 → P(V1)∗P(T1|V1)∗P(LCM |V1,T1) = 0.5 ∗0.54 ∗0.02 = 0.0054

CM = 0.98
V1 = 0.5 T2 = 0.46 LCM = 0.035 → P(V1)∗P(T2|V1)∗P(LCM |V1,T2) = 0.5 ∗0.46 ∗0.35 = 0.00805

CM = 0.965

T1 = 0.46 LCM = 0.035 → P(V2)∗P(T1|V2)∗P(LCM |V2,T1) = 0.5 ∗0.46 ∗0.35 = 0.00805 

CM = 0.965
T2 = 0.54 LCM = .02 → P(V2)∗P(T2|V2)∗P(LCM |V2,T2) = 0.5 ∗0.54 ∗0.2 = 0.0054

V2 = 0.5
CM = 0.98

+
Output: Total Residual Risk (TRR) = 0.0269 (or 2.69%)

FIGURE 14 | Simplest 2 × 2 × 2 tree diagram for two threats and for two vulnerabilities in a cyber-risk scenario.

P12(threat 2 probability for vulnerability 1)

= (X12 + Y12)/(X11 + Y11 + X12 + Y12) = 85
185

= 0.46, (32)

P21(threat 1 probability for vulnerability 2)

= (X21 + Y21)/(X21 + Y21 + X22 + Y22) = 85
185

= 0.46, (33)

P22(threat 2 probability for vulnerability 2)

= (X22 + Y22)/(X21 + Y21 + X22 + Y22) = 100
185

= 0.54, (34)

P1(vulnerability 1) = (X11 + Y11 + X12 + Y12)/

(X11 + Y11 + X12 + Y12 + X21 + Y21 + X22 + Y22)

= 185
370

= 0.5, (35)

P2(vulnerability 2) = (X21 + Y21 + X22 + Y22)/

(X11 + Y11 + X12 + Y12 + X21 + Y21 + X22 + Y22)

= 185
370

= 0.5. (36)

The probabilities of LCM (Lack of Counter-
measure) and CM (Countermeasure) where CM +
LCM = 1 for the vulnerability-threat pairs demon-
strated in Figure 14.

P(LCM11) = (Y11)/(X11 + Y11) = 2
100

= 0.02,

hence, P(CM11) = 1 − 0.02 = 0.98, (37)

P(LCM12) = (Y12)/(X12 + Y12) = 3
85

= 0.035,

hence, P(CM12) = 1 − 0, (38)

P(LCM21) = (Y21)/(X21 + Y21) = 3
85

= 0.035,

hence, P(CM21) = 1 − 0.035 = 0.965, (39)

P(LCM22) = (Y22)/(X22 + Y22) = 2
100

= 0.02,

hence, P(CM22) = 1 − 0.02 = 0.98. (40)

We place the estimated input values for the security
meter in Figure 14 to calculate total residual risk.

Therefore, once you build the probabilistic model
from the empirical data, as above, which should
verify the final results, you can forecast or predict
any ‘taxonomic’ activity whether it is the number
of vulnerabilities or threats or crashes as in Table 7.
For the study above, the total number of crashes is
10 out of 370 total events, which gives a ratio of
10/370 = 0.0270 to verify the final results in Figure 14.

Using this probabilistically accurate model, we
can predict what will happen in a different setting or
year for a newly given explanatory set of data as in
Table 7. If a clue suggests to us a future 1000 total
episodes and 500 episodes of vulnerabilities of V1,
then by the avalanche effect, we can fill in all the
other blanks, such as for V2 =500. Then (0.5405)
(500) = 270.2 of T1 and (0.4595)(500) = 229.7 of
T2. Out of 270.2T1 episodes, (0.02)(270.2) = 5.4054
for LCM, were yielding to 5.4 crashes. Therefore,
antivirus devices or firewalls have led to 264.8 pre-
ventions or saves. Again for T2 of V1: (0.035)(229.7)
= 8.1 crashes and (0.965)(229.7) = 221.6 saves. The
same holds for the V2 due to symmetric data in this
example depicted in Table 7. If the asset is $2500 and
the criticality constant is 0.4̧ then the ECL (expected
cost of loss) is demonstrated in Figure 14 following
above calculations. Also,

ECL = Residual Risk × Criticality × Asset

= (0.0269)(0.4)($2500) = $26.9. (41)
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TABLE 7 The Deterministic Estimates of the SM Parameters in Figure 15 and Figure 16 Given the Total Number of Attacks

Total Attacks VB Attacks % Crashes Saves Threat Events % Crashes Saves Risk Post Pct Post vb

370 v1 185 50.00 5 180 v1.t1 100.0 54.05 2.0 98.0 0.005405 20.00 0.0500000

v1.t2 85.0 45.95 3.0 82.0 0.008108 30.00 0.0500000

v2 185 50.00 5 180 v2.t1 100.0 54.05 2.0 98.0 0.005405 20.00 0.0500000

v2.t2 85.0 45.95 3.0 82.0 0.008108 30.00 0.0500000

1000 v1 500 50.00 14 486 v1.t1 270.2. . . 54.05 5.4054. . . 264.8. . . 0.005405 20.00 0.0500000

v1.t2 229.7. . . 45.95 8.1081. . . 221.6. . . 0.008108 30.00 0.0500000

v2 500 50.00 14 486 v2.t1 270.2. . . 54.05 5.4054. . . 264.8. . . 0.005405 20.00 0.0500000

v2.t2 229.7. . . 45.95 8.1081. . . 221.6. . . 0.008108 30.00 0.0500000

Discrete Event (Dynamic Time-Dependent)
Simulation using Negative Exponential p.d.f.
The analyst is expected to simulate a cyber-
component’s (such as a server) tree-diagram 10
consecutive times from the beginning of the year
(e.g., 1/1/2013) until the end of 1000 years (i.e.,
12/31/3012) in an 8,760,000 h period, with a life cycle
of crashes or saves for a total of 10 × 1000 = 10,000
simulation runs. The input data is tabulated in Table 7
to conduct the generation of random deviates. At
the end of this planned time period, the analyst
will fill in the elements of the tree diagram for a
2 × 2 × 2 security meter’s tree diagram model as in
Figure 14. Recall that the rates are the reciprocals
of the means for the assumption of a negative
exponential probability density function to represent
the distribution of time to crash. For example,
if λ = 98 per 8760 h, the mean time to crash is
8760/98 = 89.38 h. Use the input as in Table 7.20,22

We observe a result of TRR = 0.0269 ≈ 0.027 in
Figure 15.

Monte Carlo (Static Time-Independent)
Simulation using Poisson p.d.f.
Using the identical information in Section Example
for Security Meter Risk Modeling and Simulation,
the analyst is expected to use the principles of
Monte Carlo simulation to simulate the 2 × 2 × 2
security meter as in Table 7 and Figure 14 for 10
repeated trials. One employs the Poisson distribution
for generating failure and repair rates for each leg
in the tree diagram of the 2 × 2 × 2 model shown in
Figure 14. The rates are given as the count of saves
(repairs) or crashes (failures) annually. The necessary
rates of occurrence for the Poisson distribution’s
random value generation were given in the empirical
data in Table 7 above. For each security meter
realization, get a risk value and average it over
n = 10,000 in 1000 increments. When you average
over n = 1000 runs, you should get the same value as

in Figure 15. Using the same data, as projected, we get
the same results in Figure 16 as in Figure 15. That is,
TRR = 0.0269 ≈ 0.027.20,24 Therefore, DES and MC
results were identical to four decimals as expected.

Monte Carlo (Static Time-Independent)
Simulation using a Continuous Uniform p.d.f.
In another cyber server setting, with three vulnera-
bilities (V1, V2, V3) with four threat levels forV1,
three threat levels each for V2 and for V3; the
following upper and lower risk values for U(a,b)
are assumed to be available for each vulnerability,
threat and corresponding LCM variables, as follow
in Table 8. Selected upper and lower uniformly dis-
tributed example values are very close to reduce varia-
tion. Theoretical derivations for TRR’s mean and vari-
ance are by MAPLE software using are as follow.24

M := 0.260432113, V := 0.0000144453852,
as copied from MAPLE outcomes, are tabulated in
Table 8:

M := 0.05040004790 + 0.03247999996

+ 0.003360000913 + 0.002800000577

+ 0.03717999068 + 0.003380000475

+ 0.007903999736 + 0.03494401504

+ 0.06903005201 + 0.01895400665.

Tables 9 and Figure 17 provide the comparative
analytical MAPLE tabulations and Monte Carlo
Simulations below. The means are almost identical
to 10−6 identical and standard deviations are only
9 × 10−5 apart. This alone shows the predictive power
of modeling and simulation for cyber security studies
in Section A Review of Modeling and Simulation in
Cybersecurity in addition to those of production or
manufacturing engineering in Section A Cross Section
of Modeling and Simulation Issues in Manufacturing.
Therefore, ECL = Final Risk × $8K = 0.26 × 0.4 ×
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FIGURE 15 | DES results of the 2 × 2 × 2 security meter sampling design.

FIGURE 16 | The Monte Carlo (MC) simulation results of the 2 × 2 × 2 security meter sampling design.

TABLE 8 Simulation Input Data for the SM’s Uniformly Distributed U(a, b), TRR = ∑10
1 RRi = 0.26

Vulnerability Threat Lack of Countermeasure Residual Risk (RRi )

Lower Upper Lower Upper Lower Upper Expected

0.34 0.36 0.47 0.49 0.29 0.31 0.0504

0.15 0.17 0.57 0.59 0.0324

0.31 0.33 0.02 0.04 0.0033

0.03 0.05 0.19 0.21 0.0028

0.25 0.27 0.21 0.23 0.64 0.66 0.0371

0.01 0.03 0.64 0.66 0.0033

0.75 0.77 0.03 0.05 0.0079

0.38 0.40 0.31 0.33 0.27 0.29 0.0349

0.58 0.60 0.29 0.31 0.0690

0.08 0.10 0.53 0.55 0.0189

$8K = 0.104173 × $8K = $833.38 is the expected
cost of loss to redeem if no risk is desired. How to
mitigate the accrued risk from unwanted to a tolerable
risk percentage is detailed in Refs 24 and 50.

DISCUSSION AND CONCLUSION
The power of simulation is evident from countless
number of contemporary research works in addition
to industrial and military undertakings to save time
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FIGURE 17 | Monte Carlo simulations for the cyber server ($8000 asset) example with inputs in Table 8.

TABLE 9 Comparison of Monte Carlo and Analytical Results for the
Cyber Server from Input of Table 8

Monte Carlo Simulation for
U(a,b) in 1 M runs (n = 1,000,000)

MAPLE (analytical) for
U(a,b)

TRR(M) = 0.260430 TRR(M) = 0.260432

TRR(V) = 0.0000089 TRR(V) = 0.00001444

TRR(S) = 0.0029 TRR(S) = 0.0038

and budget. Besides nondestructively ‘learning the
truth’ before ‘unexpected things happen’ in the
real-world sense at an incomparably cost effective
setting; the science and art of M&S cracks the code
for numerous challenging problems where analytical
derivations or formulae prove inutile by reaching a
dead-end. The objective of applying simulation is to
strengthen the advantages of the IT corporate circles
and reduce the disadvantages, mainly because of the
economic pressure and time constraints in the business
world. A gamut of modeling and simulation practices
in the Armed Forces flank can be advantageously
utilized to plan saving time and resources so as to
avoid wasting a tight budget for ‘the most bang for the
buck’ before new projects are hastily commissioned,
only to see that they are not what to get the job
done in a disappointing finale. Uses of simulation
in medical oncology or else, as well as its impact
in the area of computational finance are only some
of its virtually endless applications.51,52 Following
a brief introduction and running a best-kept-secret
historical perspective to the origins of simulation, the
author reviews the literature as to why the art and
science of modeling and simulation are crucial to

today’s engineering world. The review further focuses
on the currently popular manufacturing and cyber
defense issues, to cite a few examples if not all, to
set the stage for the rest of the plentiful engineering
avenues.

On the manufacturing or production front,
the author in response to then-in-2007-unsolved
homework question 5.5 on p. 256 from his Wiley
textbook,20 reviews the set of techniques to generate
the multistate probability distribution model of
an important pillar of trustworthiness, that is,
availability. Namely, when the availability (or
reliability) of a unit is at stake, and while the unit
possesses three operational states with a derated
state added beyond the usual two-state binary or
dichotomous assumption, conventional applications
do not suffice. Therefore, it is worth to review
the fact that the primary difference between other
related works30–32 and author’s empirical Bayesian
treatment of the three states of a repairable hardware
unit is to estimate the p.d.f.s of these three states
by using Monte Carlo simulations.38,39 The closest
article to this one uses only four transition rates in
a three-state Markov model whereas the reviewed
Monte Carlo model uses all six transitions.30 This
reviewed statistical simulation approach is powerful
and flexible, whereas Ref 30 deals with differential
equations limited in scope. Other close references deal
with different topics; however none use any simulation
techniques.31,32

It is currently infeasible to find closed form
solutions for the random variables of UP, DER,
and DOWN expressed by Eqs (5)–(8) because of
a multiplicity of sums and products of gamma
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random variables expressed in the denominator
term of Three-State Sahinoglu Probability Model of
Production Units (Monte Carlo Simulation). In the
final analysis shown in Statistical Simulation of Three-
State Units to Estimate the Density of UP, DOWN
and DER, the resulting distributions for the three
parameters, UP, DER and DOWN are approximated
by normal distributions. The outcome distributions
in A Cross Section of Modeling and Simulation
Issues in Manufacturing are quasisymmetrical with
E (Mean) and M (median) almost equal, although
slightly right-skewed because Mean ≈ Median >

Mode. The reviewed Sahinoglu–Libby, a.k.a., SL
(α, β, L) is the continuous probability density function
of the unavailability (or availability when duly
reparametrized) of a two-state unit. For those
units whose life time can be decomposed into
operating (UP), derated (DER), and nonoperating
(DOWN) states in a three-state setting, sojourn
times are assumed to be distributed according to
the generalized gamma p.d.f. where both shape and
scale parameters are non-identical. The resultant
density plots in Figures 12 and 13, following
extensive statistical simulations in A Cross Section
of Modeling and Simulation Issues in Manufacturing,
are approximately symmetric normal despite a spike
for the mode. These plots definitely qualify to pass
goodness-of-fit tested for Normal p.d.f. Because
of infeasibility of closed form analytical solutions
for the explained three-state version; the Monte
Carlo simulation technique is rightfully selected as
a mathematically tractable model to calculate the
UP, DER, and DOWN probabilities for a three-state
repairable hardware unit.

These summary measures are all shown in
the plots of the JAVA applications throughout A
Cross Section of Modeling and Simulation Issues
in Manufacturing. Network applications for medium
and large networks are studied using Monte Carlo
simulations in references.20–24 After the analyses, the
approximate closed form p.d.f.s can be estimated
as shown in Statistical Simulation of Three-State
Units to Estimate the Density of UP, DOWN, and
DER because of the favorable results by normal
probability plots. Researchers can utilize the results
for their related research when deriving the p.d.f.s
of their Markov states in other disciplines such as
business, for example, banking.53 Currently, only
deterministic probabilities can be calculated through
Markov algebra, but not their probability densities.
For example, a credit card is either closed (if less
than a critical credit score), open (more than) or
only conditionally usable for urgent cases (between
lower and upper). The Bank actuarians may want to

estimate the p.d.f.s of these three states to conduct
statistical inference using customer-based empirical
data by employing empirical Bayesian analysis. Multi-
state systems such as in the case of four multiple
derated states representing electric power turbines, as
cited in Refs 20 (p. 280, Figure 6.26) and 45 (p. 201,
Figure 10) can be derived. These estimators for unit
availability can further be propagated to simulate
the source-target availability for troublesome complex
networks.

Regarding the cyber security science and
engineering issues however, implementation of
modeling and simulation compared to manufacturing
industry is fairly new progressing at an experimental
stage. This fact is not only because of involvement
of human life and death situations in adversity, as
compared to accidental casualties in the production
world, but also because of lack of theoretical and
experiential data base dating back to only 1990s since
the launch of public internet. The author, by following
examples in this area proceeds with currently popular
VaR technique by Kim et al.49 and Security Meter and
CLOUD simulation tools (CLOURA) by Sahinoglu
et al.26 Monte Carlo VaR is costly to execute; it
does not incorporate cost comparisons when taking
measures. Consider a medium size firm holding
positions in 20,000 different financial instruments.
Running a 100,000 simulation Monte Carlo VaR
calculation requires generating 2 billion simulated
instrument prices. With a conservative estimate of
10 milliseconds per pricing, this calculation requires
more than 5500 h of processor time over an 8 h
window. The capital cost of hardware plus the
operational cost for data center space, power,
cooling and maintenance makes this cost prohibitive
to all but the largest firms. However, scalable
CLOURA is a very fast algorithm, that is, it can
simulate a CLOUD system with 430 servers for
1000 years in less than 4 min.26 SM simulations as
in Tables 7–9 and Figures 15–17 and are relatively
fast and accurate, comparable to their analytical
counterparts.20–22

Overall M&S techniques abound, particularly
face-saving in the case of theoretical impasses, and
sometimes the only viable solutions in engineering
and scientific applications. The multiples of positive
results render M&S methods among the most useful
and practical, as well as affordable algorithms of our
time. If one day, humankind can make it to the surface
of the red planet Mars, it will be possible because
humans will have nondestructively travelled to Mars
some tri-zillion times by riding on the cyber space

Volume 5, May/June 2013 © 2013 Wiley Per iodica ls, Inc. 259



Overview wires.wiley.com/compstats

through digital simulation rather than on the outer
space. The author contends that positive solutions
will realize for cancer and currently incurable dis-
eases by crunching computationally intensive and
nonlethal M&S techniques. The application of M&S
to engineering, cyberspace and health informatics,
however, is not an easy task with much progress
remains to be done. This overview also aims to pro-
voke thoughts and stimulate ideas for such goals
by exploring interdisciplinary avenues through M&S
using supercomputing.

Finally, one exam question in a Cybersecurity
M.S. program’s midterm exam at AUM54 asked,
‘What would separate you in your future job if you
took an M&S course, and others did not have any
clue?’ The following four responses in Appendix B
were gathered from candidates invariably all with a
military background, either on active duty or retired
USAF. The responses, as quoted, did demonstrate an
awakening of mind on the timely significance of Mod-
eling and Simulation in cyberspace and reliability and
security engineering.
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APPENDIX A
See Figures A1–A9.

FIGURE A1 | Uniform numbers testing; Ho: random versus
Ha: not random for 500 runs. Ho is not rejected.

FIGURE A2 | Uniform numbers testing; Ho: random versus
Ha: not random for 500 runs. Ho is rejected. On the average, one
out of 40 cycles of 500 runs = 20,000 simulations will end up
rejecting Ho: random.

FIGURE A3 | Uniform numbers testing; Ho: random versus
Ha: not random for 5000 runs. Ho is NOT rejected.
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FIGURE A4 | Uniform numbers testing; Ho: random
versus Ha: not random for 5000 runs. Ho is rejected. On the
average, one out of 10 cycles of 5000 = 50,000 simulations
will end up rejecting Ho: random.

FIGURE A5 | Uniform numbers testing; Ho: random
versus Ha: not random for 10000 runs. Ho is NOT rejected.

FIGURE A6 | Uniform numbers testing; Ho: random
versus Ha: not random for 10,000 runs. Ho is rejected. On the
average, one out of 25 cycles of 10,000 = 250,000
simulations will end up rejecting Ho: random.
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FIGURE A7 | Uniform numbers testing; Ho: random
versus Ha: not random for 50,000 runs. Ho is NOT rejected.
After 60 cycles × 50K = 3000K = 3,000,000 simulations
there is still no reject Ho = random sequence. This may
signal a cut-off point of no rejection of random sequence
from this point on. Safe threshold may be 50K for JAVA
coding uniform random number generator.

FIGURE A8 | Uniform numbers testing; Ho: random
versus Ha: not random for 100,000 runs. Ho is NOT rejected.
After 50 cycles × 100K = 5000K = 5,000,000 simulations,
there is still no reject Ho = random sequence. This may
signal still no rejection of random sequence from the earlier
safe threshold: 50K for a JAVA coding uniform random
number generator.

FIGURE A9 | Uniform numbers testing; Ho: random
versus Ha: not random for 250,000 runs. Ho is not rejected.
After 40 cycles × 250K = 10,000K = 10,000,000
simulations there is still no reject Ho = Random Sequence.
This may signal still no rejection of random sequence from
the earlier safe threshold: 50K simulations for a JAVA coding
uniform random number generator. Important Note: In this
figure, buttons indicate: No of values = 250,000 (simulation
runs), DF = 6 (Section on Generic Theory, by Knuth’s
Technique10,11), Significance level (Type-I error) = 5%, Total
Runs: 41,606 × 1 + 51,836 × 2 + 23,059 × 3 + 6583 × 4
+ 1482 × 5 + 290 × 6.093 (average for >6) = 250,000,
where bold numbers from 1 to >6 are calculated run sizes by
Knuth’s method. χ2 calculated = 7.57 <χ2 critical
value = 12.59. Do NOT reject Ho: random sequence.
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APPENDIX B

(1) I would be able to provide practical feedback when designing a real world IT project (e.g., software). I could
use the simulation to run tests on software before it is implemented on a network. This gives me an advantage
over my colleagues, as I am able to safely determine correctness and efficiency of the software. (2) By using
M&S, you are able to show your security risk and probability of occurrence within each area of cyber security.
By also being the only one at your firm with the M&S experience you have put yourself in a great position for
upward mobility or at the very least a project manager or lead with nondestructive testing. (3) If I had M&S
background and coworkers did not, I would have the advantage to develop models and run various simulations
to aid in my decision-making process. They would not have this capability and their probability of making the
correct decisions would be reduced. Not only would my decisions have a greater chance of being correct, but
even in the event a bad decision was made; I would have data to support my decisions where my co-workers
would not. (4) Working in a Cybersecurity firm and having the knowledge of M&S enables one to experiment
with probability of occurrences. This will enable me analyze potential return on investments by product or
lifecycle costs. Lastly, being able to test new products and methods will assist me, and corporate management
to make the right decisions based on modeling and simulation versus ‘gut’ feelings.
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