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Embedded Systems
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Abstract—A large amount of work is in progress on reliability
block diagramming (RBD) techniques. Another body of dynamic
research is in digital testing of embedded systems with very large
scale integration (VLSI) circuits. Each embedded system, whether
simple or complex, can be decomposed to consist of components
(blocks) and interconnections or transmissions (links) within an
s-source (input) and t-target (output) setup. There will be three
tools proposed in this study. The first tool, using a novel “com-
pression algorithm” is capable of reducing any complicated se-
ries-parallel system (not complex) to a visibly easy sequence of
series and parallel blocks in a reliability block diagram by first
finding all existing paths, then algorithmically compressing all re-
dundant component duplications, and finally calculating an exact
reliability and creating an encoding of the topology. A second tool
is to decode and retrieve an already coded s — t dependency rela-
tionship using post-fix notation for series-parallel or complex sys-
tems. A third tool is an approximate fast upper-bound (FUB) s — ¢
reliability computing algorithm designed for series—parallel sys-
tems, to perform state enumeration in a hybrid form assisted by
the Polish encoding approach on non-series-parallel complex sys-
tems to compute the exact s (source)—t (target) reliability. Various
examples illustrate how these tools work satisfactorily in unison.
Further research with the OVERLAP method is in progress to re-
duce the computation speed by a thousand fold for a grid of 19
nodes without sacrificing any accuracy.

Index Terms—Code—decode, complex, compression, hybrid, reli-
ability block diagramming (RBD), series-parallel, s — ¢ reliability.

I. INTRODUCTION AND MOTIVATION

ELIABILITY block diagramming (RBD) has been an

active area of research for decades, even more so now
with the advent of the embedded systems [1]-[11]. This paper
explores to describe and compute the s — ¢ reliability in such
(embedded) systems through an RBD approach. It is assumed
that the input data required, such as reliability or availability
including the aspect of security for each component and link
in the RBD approach, is correctly facilitated by improving
the very large scale integration (VLSI) testing techniques
[24]1-[30]. Earlier, simple or complicated series—parallel sys-
tems are studied to demonstrate that these networks can be
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encoded using a modified Polish notation employing postfixes
[12], [17], [19]-[22]. The “compression” algorithm through
a user-friendly and graphical Java application computes the
reliability of any series—parallel network, no matter how large
or complicated it is. Furthermore, the encoded topology can be
transmitted remotely and then reverse-coded to reconstruct the
original network diagram for purposes of securing classified in-
formation and saving space, a project which is also in progress
nearing completion.

Interest in considering reliability during design of computer
communications networks with a large number of nodes and
connecting links, such as those found in hospitals, universities,
electricity distribution, gas pipelines, military, or internet has in-
creased in recent years. Due to geographical and physical con-
straints in such critical systems, designers at the initial or im-
provement stages usually base their decisions on approximate or
upper-bound estimates of reliability to compute a given ingress
(source) to egress (target) reliability. This practice may be de-
ceptive, erroneous and overly optimistic due to computational
complexity when reliability remains of a crucial importance that
means human life and health.

The graphical screening ease and convenience of this algo-
rithm are advantageous for planners and designers trying to im-
prove system reliability by allowing a quick and efficient in-
tervention that may be required at a dispatch center to observe
routine operations and/or identify solution alternatives in case
of a crisis.

The Boolean decomposition and binary enumeration algo-
rithms or BDD [13]-[16] are outside the scope of this work,
although it illustrates a new hybrid solution with the Polish
notation. The proposed algorithm, through a user-friendly and
graphical Java applet, computes the reliability of any complex
series-parallel network. Furthermore, the coded topology can be
transmitted remotely and then reverse-engineered to reconstruct
the original network diagram for purposes of securing classified
information and saving space.

All current exact computational algorithms for general net-
works are based on enumeration of states, minpaths, or min-
cuts [2], [3]. Network reliability estimation has been used suc-
cessfully for nontrivial-sized networks using neural networks
and heuristic algorithms in [7] and [8] as well as employing a
“concurrent error detection” approach by the coauthor of this
research as in [18]. Other researchers have used efficient Monte

0018-9456/$20.00 © 2005 IEEE
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2 Paths - Reliabilities - Polish Notation

-=emeeeees= Single Path - Reliability for Ingress Node: 1 Egress Node: 4------eeeeees
ith Transmission: Exact Reliability: 0.711504 for

Polish Notation: 1,-1,2,%,-2,3,%,-3,%,-4,5,%,-7,%, +,%,-5,6,%,-6,%, + %, 4,*
ithout Transmission: Exact Reliability, 0.711504
=== Multi Path - Reliability With Transmission------------: Upper Bound = 0.92934273024
Reliability Polish Notation

- DX

1 051840000  1,-1,%2,%-2,%3,%-3,%4,",
2 058320000  1,-1,%2,%-4,%5,%-7,%.4,% +,
3 0.64800000 1,-5,%6,7-6,%4,, +

Fmemeeeme-= UL Path - Reliability Without Transmission-------- ‘Upper Bound = 0.92934273024

Path # Reliability Polish Notation
1 0.51840000 1,2,%3,"4,7,

2 0.58320000 1,2,%5,74,% +
3 0.64800000 1,6,*4,% +

Recalculate 1 2 3 4 5 6
0.8 1 - 0.7200000000... 0.6278400000... 0.711504 0.7063200000... 0.7200000000...
0.9 2 0.7200000000... - 0.7200000000... 0.805464 0.81 0.7908840000...
0.8 3 0.6325056 0.7200000000... - 0.7200000000... 0.7128000000... 0.7103376000...
0.9 4 0.711504 0.805464 0.7200000000... @ 0.81
0.9 5 0.7109856000... 0.81 0.7128000000... 0.81 - 0.7978176
0.9 6 0.7200000000... 0.7908840000... 0.69984 0.81 0.78732 -

O
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Fig. 1.

Carlo simulation [4], [5]. Bounds like Jan’s upper-bound, to re-
duce the complexity of computations, are approximate [3]. A
thorough analysis is given by Colbourn [1].

II. TLLUSTRATIVE SIMPLE EXAMPLE

For this paper, some series—parallel examples will be used
to illustrate the algorithm. The RBD tool is a Java application.
The example with an exact reliability solution is simple and
tractable by hand. The method used in this paper, exact reli-
ability block diagram calculation (ERBDC), is an exact cal-
culation of s — ¢ reliability but tractable for large networks.
As an example of this method, a Java applet (Fig. 1, Table I)
examines Example 6.3 of Fig. 6.4 of [11]. The node failures
are all ¢ = 0.1, except for g3 = ¢q3 = 2¢ = 0.2. (Note,
links have zero failure probability for simplicity.) Let T de-
note a tie-set. If ¢ = failure probability for all components,
then Pr(T1U ToU Tj) = Pr(164) 4+ Pr(1234) 4+ Pr(1254) —
Pr(12364) — Pr(12654) — Pr(12354) +Pr(123654) = (1 —
2¢9)(1-2q+¢*)(14+q—2¢%) = 0.8%0.81%1.098 = 0.711504,
which can be observed in the array 1, 4 of Fig. 1, Table 1. The
ingress—egress relationship is also tabulated in Fig. 1, Table I
by Polish, or postfix notation where postfixes * and + denote
two-at-a-time series and parallel components, respectively, by

Microsoft P... | {3 JBuilder8-...

M 3 javaw - EN /B2 H ® _"-‘r'xr':ﬁﬂ[ﬁ 21:56

Screen 1: RBD and matrix of s — t reliabilities from text in [11], Table I: reliability results of (s = 1,t = 4).

Sahinoglu and Libby [6]. The upper-bound of system reliability
is calculated by treating the three paths in parallel, Reliability =
1—(1—.0648)(1 — .5184)(1 — .5832) = 0.92934, as shown
in Fig. 1, Table 1.

However, when the number of components is increased to
many more, it becomes tedious to arrange the network in a nice
sequence of series and parallel subsystems. The “compression
algorithm” does that and also calculates the exact s — ¢ relia-
bility for simple series—parallel (not complex) but complicated
looking systems, as it will be shown in Section III.

III. COMPRESSION ALGORITHM AND
VARIOUS APPLICATIONS

The algorithm to facilitate a simpler way to compute the
s — t reliability is as follows. In a parallel set composed of
i,j,k,l,m,... paths; at each item ¢, compress for each fol-
lowing item j. If ¢ can combine with j; then do so, and remove
7. If not, then keep it and then compress again with the next
kth path, until all of the parallel paths have been exhausted. At
the end, there is a single compressed path RBD from ingress
to egress node. A line between two nodes is treated as a series
component between the two, such as in Fig. 1, Table I. Line-1
connecting the nodes 1 and 2 is expressed as in 1, —1, %, 2,
*. Two components in parallel are designated as 1, 2, + [6],
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&Pathq - Reliabilities - Polish Notation = IDI

Path #
1

2
3
4

Path #
1

2
3
4

Ingress Node: 1

Myith Transmission:
Reliability: 0.674211546997457
Polish Notation: 1,-1,2,*,-4,%,-2,3,* -3,%,+,5,*, -10,*,-7, 4,* -5,6,*,-8,%,-6,7,*,-9,*, +, ", +, ", 8,*

Miithout Transmission:
Reliability: 0.80037639
Polich Notation: 1,2,3,+,5,% 4,6,7,+,% +*8*

ith Transmission:

Upper Bound = 0.8055207672609376
Wwerage Reliability = 0.3359232000000001
Lower Bound = 0.3359232000000001

wWiithout Transmission:

Upper Bound = 0.986012867038816
Wwerage Reliability = 0.6561000000000001
Lower Bound = 0.6561000000000001

Egress Node: 8

————————————— Single Path - Reliability-—-——

=mmmmmmmeeee=[f Ul Path - Reliaility-----mm--=-n

Reliability Polish Notation

033592320 1,-1,72,"-4,%5,7-10,".8,",
033592320 1,-2,%,3,%-3,%,5,7-10,%8,%, +,
033502320  1,-7,%4,%-5,%6,7,8,7.8,%, +,
033592320 1,-7,%4,%-6,%7,%-0,%8,% +

Reliability Polish Notation
0.65610000 1,2,%56,%8,7,
0.65610000 1,3,75, 78,7+,
065610000 1,4,%6,%8,% +,
0.65610000 1,4 %7,58,*+

NextNode: | | [ |Reliabiity:

03 INext Transmi... [Fa [

0.8

Reliability:

Fig. 2. Screen 2: s — t reliability (s = 1, t = 8) for a series-parallel network. RBD. Table II: Results.

[12], [17], [19]-[22]. Let us take the following series—parallel
example as in Fig. 2, Table II.

The + postfixes at the end of each serial path denote that those
paths will be combined in parallel to calculate the upper bound.
Otherwise, each path has all of its components connected in se-
ries denoted by a succession of * postfixes. No more than two
consecutive components are allowed for each postfix. One will
take each pathin ascending or descending sequence as convenient
to compare and contrast. The compression is executed as many
times as existing paths. See Table III for an illustration. A com-
plicated and not obviously tractable series—parallel Ding—Dong1
network of Fig.3 (Screens 3 and 4) will also be studied.

On the other hand, Fig. 3 depicts a simulated LAN operation,
consisting of 22 links and 19 nodes. This network has all nodes
with areliability of 0.9 and links with a reliability of 0.8, respec-
tively. Note thatthe lines are assigned negative prefixes,and s = 1
and t = 13 are the ingress (source) and egress (target) nodes,
respectively. The network can be translated into a Polish (depen-
dency) notation as in Table IV to calculate the s — ¢ reliability.
The algorithm offers a user-friendly graphical interface, speed,
and accuracy especially in the event of imperfect links beyond
a secure environment to transport on the net through a reverse
engineering process, given in the final section of this paper.

Another application for the compression algorithm for an
11-node simple series—parallel network is as follows. The s — ¢
reliability analysis using the new Polish-notation approach is
presented further.

Considering path reliability, the paths or tie-sets are as fol-
lows when all links are assumed to operate with full reliability
of unity.

Without Link:
Path# Reliability Polish Notation
1 0.72900000 5,1,%,9, %,
2 0.65610000 5,1,%,10,%,9,%, 4+,
3 0.47829690 5,2,%,3,%,4,%,11,%,1,%,9,*, +,
4 0.43046721 5,2, %,3,%,4,%, 11, %, 1,%,10,%,9, %, +

The + signs at the end of each serial path denote that those
paths will be combined in parallel to calculate the upper bound.
Otherwise, each path has all its components connected in series
denoted by a succession of * postfixes. One will take each path
in ascending or descending sequence as convenient to compare
and contrast as follows:

*,9, *

*,107 *,9’ *

5 1 9,

51,
51,
to merge with

5,2,%3,%4, %11, %1, %9, * to converge to:

5 1 9, which will finally merge with

5,2,%3, %4, %11, %1, %10, *,9,*  to converge to:

Since the straight line (with a reliability of unity as assumed)
between nodes 5-1 and 1-9 dominates, the rest of the branches
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Fig. 3.

are ineffective. Therefore, the system reliability is the series
connection of three nodes 5, 1, and 9; i.e., 5, 1, %, 9, * using
Polish notation. That is, 0.9° = 0.729. If links have nonunity
reliability, then links have to be multiplied in series as well.

When the links have failures operating with nonunity relia-
bility, then it is a different scenario. The following table is uti-
lized to compose the finalized single-path RBD to calculate the
exact reliability. Note, the negative digits denote links and sole
digits show the nodes. See Fig. 4 (Screen 5).

With Link:

Path# Reliability Polish Notation

1 0.72900000 5,—1,%,1,%,—11,%,9, %,

2 0.65610000 5,—1,%,1,%, —13,%,10,%, —12,%,9, %, +,

3 0.47829690 5,—2,%,2,%,—3,%,3,%, —4,%,4,

s, =5, %k, 11, %, —6,%,1,%, —11,%,9, %, 4,

5, —=2,%,2, %, —3,%,3, %, —4, % 4, %, —5,

#, 11, %, —6,%,1,%, —13,%,10,%, —12,%,9, %, +

4 0.43046721

The algorithm works as follows:

1) Take paths 4 and 3 from the reverse order usually choosing
from longest to shortest. Enumerate those common ele-
ments, shown in series, in the center to branch out to those
legs which are not common, shown in parallel to enable

Screens 3 and 4: Topology of Fig. 3 for Ding-Dongl network as reduced to an easier Fig. 4.

all paths successfully from the source (5) to the target (9)
node. That is, merge

5-22-33-44-511-61-1310 -129, with

5-22-33-44-511-61-11 9, to converge to:

[-13 10 -12 |
5-22-33-44-511-61 9
|-
2) Then, take the next path backward 5 —1 1 —13 10 —12
9 and merge it with the RBD in 1) by following the same
rule of thumb:

|-13 10 -12 |

5223344511 -61 9, with

5 -1 1 -13 10 -12 9, to converge to:

[22-3344-511-6| |-13 10 -12]
5| 1 9
\ -1 N
so as to enable the passage for all paths from 5 to 9.

3) Finally, take the last path in the reverse order to merge
with the RBD in 2)
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TABLE III
ILLUSTRATION OF ALGORITHM FOR A SIMPLE SERIES—PARALLEL NETWORK

BEGIN__RBD STEP 0
1,2, %5, %8, * to merge with
l’ 3, *’5$ *yss

| 2|
1| |5 8
| 3] to merge with
l’ 4’ *’69 *’8’ *9
STEP 2
| 2| |
1| | 5 |8
| 3] |
[ |
| 4 | 6 _ |
| | | to merge with
1,4,%,7,%.8
STEP 3
2] |
1| | 5 |_8
| 3] |
| |6 |
| 4 | | —1
I [ |
I 71 |

Final tableau — END RBD

| 22-3344-511-6 [-13 10 -12|
5| 1
| -1 || -1

9, with

5 -1 1 -11 9,

to converge to the same tableau as in 3) as the last path
already existed in tableau of 2)

|22 -33-44-511-6] [-13 10 -12|

5| 1 9

\ -1 L
The final table can be expressed as in following reliability
block diagram:

2 3 4 11 1 | |9
| 2 3 4 5 6 | -11
__|
|

5

-1
which results in an exact single-path reliability of 0.729,
with its complete Polish notation: 5, —1, -2, 2, %, —3, %,
3, %, —4, %, 4, %, =5 %, 11, %, —6,%,+, 1, x, —11, —13, 10,
%, —12,%, 4, %, %, 9, % that describes the above relationship
in the final RBD.

IV. HYBRID TOOL TO COMPUTE RELIABILITY
FOR COMPLEX SYSTEMS

Let us take the following non-series—parallel network to
compute s — ¢ reliability, whose Boolean decomposition result
is known to exist: 0.799 as in Fig. 5, Table V, [23]. With the
Boolean decomposition method whose decomposed diagrams
are shown (all nodes have 0.9 reliability), the system relia-
bility is computed as follows: Node 3 bad: R(sys|3bad) =
(0.9)[1—(1-0.81)(1—0.81)](0.9) = 0.9639(0.81) = 0.7806.
Node 3 good: R(sys|3good) = (0.9)[1 — (1 — 0.9)(1 —

1793

0.9)](0.9) = 0.99(0.81) = 0.8019. Result: R(system) =
R(3bad) R(system|3bad) + R(3good) R(system|3good) =
0.1(.7806) + 0.9(0.8019) = 0.799.

The system reliability is 0.799 by the “hybrid Polish-no-
tated enumeration.” After Polish-notated paths are found,
remaining fictitious nodes are created to facilitate an enu-
meration approach. The 100+ nodes symbolize nonexistent
bad nodes to denote the complement of a component, e.g.,
R(105) = 1 — R(5). This hybrid method is fast for it avoids
the recalculation of guaranteed paths by only calculating the
probabilities of the remaining nodes’ enumerated combination.
This technique avoids repetition of identical combination paths.
Instead of 36 paths (23 = 8 for each of the four 4-tuples and 2
for each of the two 6-tuples), we use only 18 paths saving 50%.
Otherwise, the “enumeration” needs 27 = 128 paths. The exact
reliability using Boolean decomposition using identical nodes
is R?2(4R? — 3R® — R* + R®) and using FAST upper bound
(FUB) employing the compression technique studied in [12],
[19]is R2(4R% — R® —5R* 4 2R6 — R” + 2R?). The theoretical
difference is R2(2R? — 4R* + R® + 2R® — R") = 0.81 * (2 %
729 — 4% 0.656 + 0.59 4+ 2 % 0.531 — 0.48) = 0.007032. After
computations shown in Fig. 6, difference (FAST upper bound —
HYBRID form) = 0.806812 — 0.799780 = 0.007032 as ex-
pected theoretically.

We will compare FUB method’s result with that of the
hybrid form by using a ten-node example as in Fig. 7, where
FUB reliability: 0.808879873 and HYBRID method reliability
(10-Nodes) = 0.798590485. Difference (AST upper bound —
HYBRID form) = 0.8088798 — 0.7985905 = 0.01. This
difference is negligible for smaller networks only.

V. MORE SUPPORTING EXAMPLES FOR THE HYBRID FORM

See the eight-nodes star-like example given in Fig. 6. We
will compare the approximate FUB method’s result with that
of the exact hybrid form. Then, a ten-node example in Fig. 7
will follow. The comparative results for the hybrid and FUB are
given in Tables VI and VII.

VI. DECODING ALGORITHM

The objective is to generate a reverse coded reliability block
diagram from the Polish notation and recreate the original
topology generated by the RBD compression algorithm. The
platform used is Java. This diagram helps view complex net-
work paths from an ingress to an egress node, and it ultimately
calculates the system reliability for series—parallel reducible
networks.

The following is the approach taken to recreate the RBD from
a given Polish notation.

1) Accept the Polish notation from the user. The Polish no-
tation consists of nodes (numbers) and operators (“x” or
“+7).

2) Parse the Polish notation to identify the nodes and opera-
tions.

3) Identify the node pairs that connect. Use the existing Java
components and the node pairs that are identified to draw

the RBD.
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TABLE 1V
EXACT RELIABILITIES FOR THE SERIES—PARALLEL DING-DONG1 AS IN FIG. 3 (SCREENS 3 AND 4)

Analytical Results: Ingress Node: 1 Egress Node: 13
Without Transmission (Link) Reliabilities, Exact Reliability: 0.7938938796628517
Polish Notation: 1, 2, 4, *,5,* 6,* 7,%,8,9,10,*, +, *, 11,*, 3,14, *,15, *,16, *,17,18, +, *,19, *, +,12, +, *,13, *

Path # Reliability = Polish Notation

1 0.38742048 1,2,*4,%5,%,6,*7,*8, %11, *,13, *,

2 0.34867844 1,2,*4,%5,%,6,%7,%09, %10, *,11, *,13, *, +,
3 0.43046721 1,3, *,14, *,15, *,16, *,17, *,19, *,13, *, +,

4 0.43046721 1, 3, *,14, *,15, *,16, *,18, *,19, *,13, *, +,

5 0.72900000 1,12, %13, *

With Transmission (Link) Reliabilities, Exact Reliability: 0.5513297153873634
Polish Notation: 1,-1,2,%,-2,*,4,% -3,% 5 % -4,% 6,* -5 * 7,% -6,8,* -10,*,-7,9, *, -8, *, 10, *, -9, *,
% 1%, 201 %, -1, 3,0, 412, %, 14, %, 13, %, 15, %, -14, %, 16, %, -15, 17, %, -17, %, -16, 18, *, -18, *, +, *, 19, *, -

22,%,+,-19,12,%,-20,*, +,*, 13, *

Properties
rProperties
Up Times (a) |1D—
Down Times(b) [10 |
Cum.a Xty [1000.0 |
Cum.b () [111.11 |
C |0.02
Ksi [1.0
D |01
Ea |10 |
rReliabilities

10
09000

Select Avallability(ry  Unavailabilityia)
E © |ossogsss | [odoso1s |
+ 0 oosor3s | [p.oozeTs |
# ) 0006855 | [0.093345 |
Ls © |osoooot | [o.oogess |
M © [ogosooo | [0.105000 |
D & |osooooo | [oaooo00 |
Fig. 4. Screen 5: 11-node network. Source (ingress) is node 5 and the target (egress) is node 9.

A stack algorithm was employed to accomplish the above.
The algorithm accepts the Polish notation and parses the nota-
tion using Java’s string tokenizer. To identify the node pairs that
connect, the following logic was incorporated:

o Push into the stack until an operator is encountered.
o If the operator is a “x” (nodes in series),
Pop the top two elements (nodes) of the stack.
Form a node pair.
Concatenate the nodes and node pairs.
Push the concatenated string onto the top of the stack.

o If the operator is a “4” (nodes in parallel)

Pop the top two elements (nodes) of the stack.

Concatenate the operator between the two nodes.

Push the concatenated string on to the top of the stack.
e Continue performing the above steps until the end of the Polish
notation.

After the node pairs are identified, the graphical Java compo-
nents FC oval (nodes) and FC Line (transmissions or connecting
links) display the network.
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L
0.4783297
0.0531441
0.0531441
0.0059049
0.0531441
0.0059049
0.0059049
0.0006561

0.0531441
0.005904%
0.0059049
0.0006561

0.0059049
0.0059049
0.0006561

0.0531441
0.0059049
0.0059049
0.0006561

0.

0.

Ingress Node: 1 Egress Node:
Path # Reliab.Contrib.

1, 2,
1,2,
1, 2,
1, 2,
1, 2,
1, 2,
1, 2,
1, 2,
L. 2,

1, 3,
1, 3,
1,3,
1, 3,
1, 3,

1, 4,
1, 4,
1, 4,
1, 4,

1, 3,
1, 3,
1, 3,
1, 3,
1, 3,

L. 2,

1, 4,

7:; Upper Bound = 0,9969291594159398

Polish Notation

Y5 T
5. 0T,
.5, "7,
'lsl "7I
5. T,
5, 0T,
"51 "7;
,lsl "71
5 T,

‘lsf '071
,Is' 'J7l
5. 7,
"5, "7,

5, %7,

*,6, %7,
"6, "7,
*,6, %7,
"6, T,

.6, "7,
*,6, *,7,
*.6, "7,
*,6, *,7,

6, %7,

L

* 3
3,
'4 3’
' 3
*, 103,
*, 103,
*, 103,
*, 103,

L

*, 10z,
*, 102,
v, 10z,
*, 102,

. 102,

-
v, 2,
*

v, 10z,

5. %

4
Y. 4
*, 104,
¥, 104,
*, 4,
" 4'
*, 104,
*, 104,
'l 4I
4
v, 104,
T, 104,
', 1lo
*, 10
*, 1o
'l
', 1o
"
T, lo
7. *
7, *

.Rel.:0.799 by the proposed polish notation approach
ith Boolean Decomposition (Conditional Pivot) Method:
ode 3 bad :R(3ys13 bad)=({0.9)(1-(1-.81)(1-.81)] (0.9)=0.9639(0.81)=0.7806(Fig.2)
ode 3 good:R(sys|3good)=(0.9)[1-(1-.9) (1-.9) ] (0.9)= 0.99 (0.81)=0.8019(F1¢.3)

R(systea)= R{3 bad) R(systeml|3 bad) + R(3 good) R{systeal|3 good)
R(system)= 0.1 (0.7806) + 0.9 (0.8019) = 0.79ﬂ (Fig.1)
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Fig. 5. Screen 6: RBD for 7-Node Network. Table V: Exact s — ¢ reliability (s = 1,t = 7) for a non-series-parallel network with a Boolean decomposition.

09 -9
1.0

Fig. 6. Screen 7: RBD for an eight-node network fors = 1, t = 8.

Networks utilizing links were deployed using the same algo-
rithmic process. Negative digits, which designate transmission

lines, will be represented as nodes first. Once the initial diagram
has been generated, a second process will, essentially, remove
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5
1.0
-1
1.0
-5
1.0
Fig. 7. Screen 8: RBD for a ten-node network for s = 1, ¢ = 10.

TABLE VI
EXACT s — t RELIABILITY FOR THE COMPLEX EIGHT-NODE IN FIG. 7.

Ingress Node:1, Egress Node: 8; Network Reliability(FAST Upper Bound)Method= 0.80895 (No
Link Failures). Polish Notation: 1, -1,2, * -4,5, % -6,3, % -7, % 7, % -9,4, * -8, % 6, * -11, * -12, +, *, -
10, +, % -5,06, % -8, 4, % -9, % 7, % -7,3, % -6, %5, % -10, % -12, +, * -11, +, * + * -2,3, % -6, 5, * -4, 2, * -5,
*¥6,% -84, *%-9, %7 % -12, % -11, + % -10,+, * -7, 7, %-9,4, % -8 * 6, *%-52 % -4, %5 %-10, % -11, + *
S12, 4+ K+ K+, 23,4, % 28,6, % -5,2, % -4, %5 %-63 %-7 %7 %-12, % -10, +, * -11, +, % -9, 7, % -7, 3, %
-6, ¥, 5, % 4,2, % -5 %6, % -11, % -10, +, * -12, +, * + ¥ 4+ ¥ §*

Exact HYBRID (8-Nodes) = 0.80818398;

Difference (FAST Upper Bound-HYBRID Form) = 0.80895 - 0.80818 = 0.00077

the oval object, which represents a node, leaving the negative
node name as the transmission line. The smallest node number
is the ingress; the largest one is the egress node.

A more complex non-series-parallel telephony network (with
19 nodes and 32 links) whose Polish-notation was previously
codedisreverse-coded or decodedin Fig. 8 toreconstruct the orig-
inal topology. Note that the hard-to-read “Polish Notation” box
is a page-long Polish notation previously obtained and inserted
using the “compression” algorithm. Although the said Polish no-
tation does not calculate the exact s — ¢ reliability for non-se-
ries-parallel networks (for which a specific hybrid technique has
been demonstrated in the preceding sections), it does success-
fully encode and decode any non-series—parallel network for a
secure and economical transport. The Polish notation approach
also prepares a base for calculating the exact reliability for any
complex system utilizing a hybrid enumeration approach. The
following Fig. 8 denotes all nodes and links invariably with a
given sample reliability of 0.99 for simplicity and convenience.
The node and link reliabilities can be altered at will. The ingress
and egress are s = 1 and ¢t = 19, respectively.

VII. CONCLUSION AND FUTURE STUDIES

Primarily, the proposed hybrid algorithm calculates the exact
s — t reliability index starting from simpler and more tractable
complex networks such as in Figs. 6 and 7, and further to more
complex as in Fig. 8. Second, the compression technique used
in FUB method, which does not give exact results but an ap-
proximate fast upper bound, however, performs a special coding
to encode and decode non-series—parallel (complex) networks.
Fig. 8 with 19 nodes and 32 links illustrates how to reconstruct
the given complex topology by a special conversion or decoding
technique. The algorithm is given in Section VI. This practice
can be useful for security, and time- and space-saving purposes.
This package enables encoding and decoding for any network
of higher and critical assurance.

In conclusion, aside from calculating the s — ¢ reliability of
any complex system, it is shown that the Polish-notation con-
structed from the graphical interface using post-fixes to describe
the topology of any complex network is useful for identifying
a given topology. Furthermore, the output can then be trans-
ported, for reasons of security or saving storage space, to a
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TABLE VII
EXACT $ — t RELIABILITY FOR THE COMPLEX TEN-NODE IN FIG. 8.

Ingress Node: 1, Egress Node: 10; Network Reliability (FAST Upper Bound) Method= 0.80887 (No
Link Failures). Polish Notation: 1,-1,2,*,-2,5,%,-8,3,* -7,% 7,* -5, 4,% -6, % 6, * -11, 8, *, -15, *, -12,
9, %, -14, %, +,* -13,9, *, -12, 6, *, -11, *, 8, *,-15, *,-14, +, *, +, * -10, 8, *,-11, 6, *,-6,4, *, -5, * 7, * -13, %, -
12,+, %, 9, % -14, %, 15, +, * +, %, -9, 6, *, -6,4, * -5, % 7, * -7,3,% -8 * 5 % -10, *, 8, *, -15,*,-13,9, *, -14,
*+,% -11, 8, %, -10, 5, %, -8, *, 3, %, -7, %, 7, %, -13, %, 9, % -14, % -15,+, * +,-12,9, %, -13,7, %, -7, %, 3, *, -8, *,

s

5,%,-10, %, 8, %, -15, %, 14, +, %, +, ¥ +,*,-3,3, %, -7,7, %, -5,4,%,-6,*%,6,%,-9,2, %, -2, % 5 % -10, *,-11,+, 8
*,-15,%,-12,9, %, -14, %, +,*,-13,9, *%,-12, 6, *,-9,2, *, -2, %, 5, %, -10, *, -11, +, *, 8, *, -15, *, -14, +, *, +, *, -8
* 7%, -13,%,-12,+,9, %, -14, % -11, 8, *, -15, *, +, *, -10, 8, *, -11, 6, *, -6, 4
*00,%, <14, %, <15, +, %, +, ¥+, K+, -4, 4,% 5,7, %, 27,3, %, -8, %,5,%,-2,2,%,-9, % 6
*,-11,8,%,-15,%,-12,9, %, -14, *, +, *,-10, 8, *, -11, 6, *,-12, *,9, *, -14, *, -15, +, *, +, *,-13, 9, *,-12, 6, *, -9,
2,%,-2, %5, %, -10, %, -11, +, *, 8, *, -15, %, -14, +, *, +,*,-6, 6, *,-9, 2, *, -2, *,5,*%,-8,3, %, -7, *%,7,*%,-13, %, 9
*, -14, *, -10, 8, *, -15, *, +, *, -11, 8, *, -10, 5, *, -8, *, 3,

5,%,-2,2,%,-9,%,6,%,-6,4,%, -5,
* -5, %, 7%, =13, %, -12, 4,

5 O,
>
>

>

>

TR T K, -13,%,9, %, <14, %, <15, 4, %, 4, -12,9, %, -

13,7,%,-7,%,3,%,-8,%,5,%,-10, %, 8, *, -15, %, -14, +, %, +, %, +, %, +, *, 10, *

Exact HYBRID (10-Nodes) = 0.79859

Difference (FAST Upper Bound-HYBRID Form) = 0.80887- 0.79859= 0.001
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remote analyst, who in turn using this algorithm can reverse
a given Polish-notation in a decoding phase to reconstruct the
topology. Both forward (encoding) and reverse (decoding) algo-
rithms work for both simple series—parallel and non-series—par-
allel, i.e., complex networks. Further, a proposed hybrid method
also computes the exact s — ¢ reliability for complex systems as
opposed to an approximate fast upper bound (FUB) more suit-
able for simple series—parallel networks because it is consider-

& pznp

EN /52 B QJ

Screen 9: Decoding (reverse Polish-notation) Process for the complex 32-node network.

ably faster and easier. However, FUB compromises the accuracy
as compared to the hybrid method for complex networks. Net-
works of various complexities are examined. The efforts to save
time are in progress for large networks exceeding 20 nodes.
The proposed hybrid algorithm can accurately calculate the
s — t reliability of a complex system such as in Fig. 8 with
19 nodes in roughly 3000 s. A new research project using an
overlap technique is in its final stages to increase the computa-
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tion speed for large complex networks in the order of a thousand
fold, from 3000 to 3 s, without sacrificing any accuracy for the
Fig. 8 network of 19 nodes and 32 links. The new approach with
an extreme speed and additional advantages such as multistate
treatment of the components is the subject matter of a new pub-
lication in the near future.
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