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Abstract—With the advances in pervasive computing and wire-
less networks, the quantitative measurements of component and
network availability have become a challenging task, especially in
the event of often encountered insufficient failure and repair data.
It is well recognized that the Forced Outage Ratio (FOR) of an
embedded hardware component is defined as the failure rate di-
vided by the sum of the failure and the repair rates; or FOR is the
operating time divided by the total exposure time. However, it is
also well documented that FOR is not a constant but is a random
variable. The probability density function (pdf) of the FOR is the
Sahinoglu–Libby (SL) probability model, named after the origi-
nators if certain underlying assumptions hold. The SL pdf is the
generalized three-parameter Beta distribution (G3B). The failure
and repair rates are taken to be the generalized Gamma variables
where the corresponding shape and scale parameters, respectively,
are not identical. The SL model is shown to default to that of a stan-
dard two-parameter Beta pdf when the shape parameters are iden-
tical. Decision Theoretic (Bayesian) solutions are employed to com-
pute small-sample Bayesian estimators by using informative and
noninformative priors for the component failure and repair rates
with respect to three definitions of loss functions. These estimators
for component availability are then propagated to calculate the net-
work expected input–output or source–target (s–t) availability for
four different fundamental networks given as examples. The pro-
posed method is superior to using a deterministic way of estimating
availability simply by dividing total up-time by exposure time. Var-
ious examples will illustrate the validity of this technique to avoid
over- or underestimation of availability when only small samples
or insufficient data exist for the historical lifecycles of components
and networks.

Index Terms—Bayes, beta, gamma, generalized three-parameter
Beta distribution (G3B), informative, loss, Sahinoglu–Libby (SL),
source–target (s–t) availability.

NOMENCLATURE

FOR Forced outage rate or unavailability
index of a hardware or software com-
ponent.

G3B Generalized three-parameter beta RV.
MLE Maximum likelihood estimate.
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Q:Unavailability RV for FOR, the probability that an
item is inoperative at any point in time
where q is a realization .

R:Availability Probability that an item is up (oper-
ating) at any point in time, where r is a
realization. .

RV Random variable.
SL Sahinoglu–Libby RV (same as G3B

RV).
cdf Cumulative probability density func-

tion of a given RV.
pdf Probability density function of a given

RV.
Number of occurrences of operative
(up) times sampled.
Number of occurrences of debugging
(down) times sampled.
Shape parameter of gamma prior for
component failure rate .
Shape parameter of gamma prior for
component recovery rate .
Expected unavailability FOR Es-
timator with informative prior using
squared error loss.
Expected availability FOR es-
timator with an informative prior using
squared error loss.
System unavailability random vari-
able.
Estimator of RV using a specified
estimation method.
Expected unavailability FOR es-
timator with informative prior using
weighted squared error loss.
Expected unavailability FOR esti-
mator with noninformative prior when

, using weighted
squared error loss.
Unavailability FOR large-sample
asymptotic estimator of if

where .
Median or Bayes estimator with infor-
mative prior for an absolute error loss
function.
System availability random variable.
Summation notation.
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Product notation.
Estimator of RV q using a specified
estimation method.
Expected availability FOR
estimator with informative prior using
weighted squared error loss.
Expected availability FOR
estimator with noninformative prior
when , using
weighted squared error loss.
Availability FOR large-
sample asymptotic estimator of if

where .
Median or Bayes estimator with infor-
mative prior for an absolute error loss
function.
Total sampled up-time for number of
occurrences.
Inverse scale parameter of gamma
prior for component failure rate .
Total sampled debugging (down)
times for number of occurrences
of debugging activity.
Inverse scale parameter of gamma
prior for component recovery rate .

mgf Moment generating function.

I. INTRODUCTION AND MOTIVATION

I N CONTRAST to earlier research conducted by the main
author on the reliability of software [19]–[22] and testing

hardware [23], also cited by [24], this paper concentrates on the
two main aspects: 1) Theory and 2) Application of the SL pdf
to hardware components and networks [9]. It is assumed that
embedded hardware elements (or firmware) are components
in a computer network that have their failure and repair rates
independently distributed with the two-parameter general-
ized Gamma pdfs. The pdf of FOR ,
where failure rate number of failures/unit time
and repair rate number of repairs/unit time.
The ratio of Prior Gamma to the sum of

Prior Gamma and Prior Gamma ,
, , was documented by Sahinoglu and Libby

in their respective published Ph.D. dissertations [3], [9], [10].
If the sampled historical up-times and down-times and ,
respectively, are exponentially distributed, then the reciprocal
of the mean “up” or “down” times and have prior Gamma
distributions on the grounds of the mathematical tractability
and conjugacy property, and versatility in representing or
approximating a wide range of distributions. Further, applying
Bayesian inference techniques, a posteriori distributions of
these rates are obtained following the merging of the prior
information with the system’s field data sampled. Subsequent
treatment of the same problem can be found in Sahinoglu et al.
[4], [5], Libby et al. [10], [11], and Pham-Gia et al. [13] in the
form of G3B , where , , .
This estimation problem was presented in a classical reference

book on statistical distributions by Johnson et al., where the SL
(or G3B) was not yet existent in the 1970 edition, which only
contained the default case of SL that was beta model [1, p. 182].
Later, the 1995 edition made a reference to the said pdf in the
form of a G3B [2, p. 251]. The SL pdf appeared first in 1981 in
the form of two independent Ph.D. dissertations [3], [10].

The pdf of availability for a multicomponent network of any
complexity more than all series or parallel is simply infeasible
to attain in a closed-form solution. Therefore, based on inde-
pendent assumption of components, a function of a product of
availabilities is necessary to estimate the desired network avail-
ability index . Numerical examples on components and
various sample network configurations are given in subsequent
sections. The goal is to calculate the expected component and
network availability accurately, despite the lack of large-sample
historical data. This will be accomplished by calculating compo-
nent availabilities, namely, Bayesian estimators, using selected
informative and noninformative priors, and using three different
loss (or penalty) functions.

II. SL PROBABILITY MODEL FORMULATION

In using the distribution function technique, the pdf of FOR
is obtained first by deriving its cdf

and then taking derivative
for as in Appendices (A.1)–(A.18), [3, pp. 26–32]–[5, p.
1487]

(1)

Beta

Beta

Beta

(2)

is the pdf of the RV FOR, where , ,
and , and . If

or , then the conventional two-parameter beta pdf is
obtained.

On the other hand, an alternative original derivation of the
same pdf under the generalized multivariate beta distribution is
given in Libby [10, pp. 272–277]. This expression can also be
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reformulated in terms of SL
as follows:

(3)

where

and

Note that if , SL pdf reduces to a Beta pdf. Sim-
ilarly, one obtains the pdf of the RV Availability ,
which by reparametrization of SL into SL
leads to the following expression for the RV

(4)

where

and

Densities of SL (or G3B) distributions have been cited by
[13] for a variety of (or per their nomenclature) values.
From a strictly mathematical point of view, the presence of the
parameter allows SL pdf to take a variety of shapes besides
the standard Beta where . For example, when

, the standard Beta is symmetric with a mean at 0.5.
However, the SL distribution is not necessarily so, and
can be positively or negatively skewed, depending on and

, respectively, because the mode, skewness, and kurtosis
of SL RV now also depend on . For , the SL
pdf stays below that of the corresponding standard Beta near
zero but crosses the latter to become the greater of the two pdfs
at [2]. The reverse
action holds true for with the same crossing point .
The desired moments as well as median and quartiles have been
generated through the use of a Java code by the corresponding
author. These values will be listed in the example in Table I.

The major drawback to the distribution is that there is no
closed form for finite estimates of the moments. The moment
generating function for the univariate SL distribution is an infi-
nite series [11]. This is why Bayes estimators can be of practical
use. The Bayes estimators, in closed or numerically integrable
forms, are derived next. Simpson’s trapezoidal formula is used
for conducting the numerical integration to compute these mo-
ments as shown in Table I.

III. BAYES ESTIMATORS FOR VARIOUS INFORMATIVE PRIORS

AND LOSS FUNCTIONS

Various studies have substantiated that the finite moments do
not exist in closed form for the SL . Standard methods
only lead to unfavorable recursive solutions, a situation that
poses a dead-end as in [11] and [13]. However, an alternative
way of finding some meaningful and computable Bayes esti-
mates for the unavailability RV and availability
is achieved by using Bayes estimation techniques with various

loss functions [3]. Two popularly used squared error loss func-
tions and one absolute error loss function will be examined as
penalty functions.

A. Squared Error Loss Function

Let denote an estimate of the RV denoted to be
FOR. The loss incurred, , in estimating the true but
unknown can be defined at will. Usually, the loss penalty in-
creases as the difference between and increases. There-
fore, the squared error loss function
has found favor where the risk of taking a decision is

Risk (5)

This would then be the variance of the estimator , penalizing
larger differences more in classical least squares theory as in
[14] and [15]. Bayes estimator of in our problem with respect
to squared error loss function is the first moment or expected
value of the RV using its pdf [3], [9]. This follows from the
fact that , if it exists, is a minimum when

, i.e., the mean of the conditional (posterior) distribution
of given (up-times) and (down-times). Then is the
Bayes solution

(6)

Similarly, the Bayes estimator of , i.e., with respect to
squared error loss function using informative prior is the first
moment or expected value of the RV using its pdf in (3). That
is

(7)

B. Absolute Error Loss Function

Similarly by Hogg and Craig [15, p. 262], the median of the
RV is the Bayes estimator using an informative prior when
the loss function is given as . If

exists, then minimizes the loss function, i.e.,
the median of the conditional (posterior) distribution of given

(up-times) and (down-times). Median is very resistant to
changes. Then or median of , is the Bayes solution.

That is, is the 50th percentile or .5 quantile, or second
quartile for , as it follows

(8)

Similarly, , is the 50th percentile or .5 quantile, or
second quartile for , as it follows:

(9)
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C. Weighted Squared Error Loss Function

Weighted squared error loss is of considerable interest to
statisticians and engineers [16], and has the attractive feature
of allowing the squared error to be weighed by , which is
a function of . This will reflect that a given error of estimation
often varies in penalty according to the value of . Then, the
weighted squared error loss function selected in such cases is
as follows:

(10)

With this loss function, the Bayes estimator of is given as
follows (see (B.1)–(B.7) for details):

(11)

Utilizing (B.7) in Appendix B, and by assuming the coefficient
of the weight function ,

(12)

where and

. This gives, when substituted into (12),
and using posterior gamma distributions by (A.7) and (A.8)

(13)
Since

is the Gamma , and
is the

Gamma , then

(14)

(15)

where the expectation of an RV distributed with Gamma
is . Therefore using (A.7). Using
(A.8), the expectation of the reciprocal of a RV distributed with
Gamma is as follows:

(16)

Similarly, employing the same “expectation of the reciprocal of
a Gamma RV” principle, and by (A.7)

(17)

Now, putting it all together as dictated by (12)

(18)

is the small sample (before the sampled sums and pre-
dominate) Bayes estimator with respect to a weighted squared
error loss function as given above and suggested for use in the
conventional studies to stress for tail values, such as or

, where the value of the weight function increases. This
is a small-sample estimator as opposed to that of asymptotic
requiring large-sample data, thereby reflecting insufficient unit
history. Here, was conveniently taken to be .
For the special case when placing (that is, scale
parameters are infinite), in (18) for noninformative
(flat) priors, becomes

(19)

Finally, asymptotically approaches the esti-
mator, the same as that of the MLE obtained by conventional
(non-Bayesian) methods, which occurs when the influence of
a priori parameters vanishes. This happens when the observed
number of samples in (19) such that and

. Then, (19) will reduce to (18)

(20)

By a similar process, we can reparametrize for the RV
as in (18). This reparameterization is achieved since,

if SL , then its complement is
SL , a characteristic that is similar to the one em-
ployed for the standard Beta as in (4). Note that

. Then

(21)

is the Bayes estimator of the availability , with respect
to a weighted squared error loss. Here, was similarly taken
for (10) to be . For the special case when ,
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TABLE I
INPUT AND OUTPUT TABLE FOR COMPONENT AND NETWORK APPLICATIONS

Sample input parameters and estimators for Case 1) of single components and for Cases 2) and 3) of system con-
figurations A to D as in Fig. 1. Case 1) single components (nonsystem), Case 2) system study with all identical
components, Case 3) system study with all nonidentical components using 1 to 4 in a sequence as needed. Gamma
prior parameters are selected from sample plots in Fig. 2 to show degrees of skewness. For example, d(shape) = 2,
�(inverse scale) = :5 is almost symmetric, c(shape) = :5, �(inverse scale) = 1 is a hyperexponential. The scale
parameters in Fig. 2 are the reciprocals of the inverse scales in this paper.

, i.e., for noninformative or flat priors, becomes
as in (22)

(22)

If the sample sizes of up- and down-times and are too
large such that , then similarly, approaches the

as as follows:

(23)

IV. AVAILABILITY CALCULATIONS FOR SIMPLE

SERIES-PARALLEL NETWORKS

Four different fundamental topologies from easiest to hardest
will be studied. Therefore, in evaluating various network avail-
ability or unavailability, exact values are used such as or

, where .

I) Series Systems: and ,
where denotes “the product of“ and series
subsystems.
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Fig. 1. A: Series-in-parallel (III), B: parallel-in-series (IV), C: parallel (II), and D: series (I).

II) Active Parallel Systems: and
, where parallel paths.

III) Series-in-Active Parallel: and
.

IV) Active Parallel-in-Series: and
.

Three cases are tested and illustrated [6]. See Table I to ob-
serve the differences between the Bayesian estimators [7], [8].
Observe also input data and results for Cases 1), 2), and 3) in
Table I. In a coding algorithm in the Java program specifically
written for this purpose, postfix is used for denoting se-
ries and postfix is used for denoting active parallel systems
[17, p. 454]. The components are treated at most two at a time
[18, pp. 298–299]. Here are some examples for the four dif-
ferent fundamental series-parallel networks. Using a hand cal-
culator, for all , , ,

, . Let us code each con-
figuration and code them using postfixes.

I) 1,2, 3,4 denotes all four components in series.
For Case 3) of nonidentical components from 1 to 4,

. For Case 2), let all s be identical.
II) 1,2, 3,4 denotes all four components in active

parallel. For Case 3) with nonidentical components
from 1 to 4, . For Case 2), let
all s be identical.

III) 1,2, 3,4 denotes that the two components (1 and
2) first in series are in active parallel with the two other

components (3 and 4) in series.
.

IV) 1,2, 3,4 denotes that the two components (1
and 2) first in active parallel are in series with the two
other components (3 and 4) that are in active parallel.

.

V. DISCUSSIONS AND CONCLUSION

This paper concentrates on the two main aspects: 1) theory
and 2) application of the SL pdf to hardware components and
networks [9]. In the theory section of this paper, a detailed
derivation of the univariate SL pdf as originally noted
in Sahinoglu and Libby’s Ph.D. dissertations is presented
with reference to a Bayesian process for informative and
noninformative priors using absolute, squared, and weighted
squared error loss functions. Therefore, SL pdf is the
continuous probability function of the RV of unavailability or
availability of a component in a network whose lifetime can
be decomposed into operating (up) and nonoperating (down)
periods in a dichotomous setting. Up- and down-times are
general Gamma models where both shape and scale parameters
are different from each other. Beta is a special case of
the SL where the ratio of the respective Gamma shape
parameters for the failure and repair rates are identical, .
Further, difficulties in calculating the closed-form moments
of the said RV are outlined in this paper, therefore suggesting
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Fig. 2. Gamma density functions (� = shape parameter and � = scale parameter).

Bayesian estimators using different informative priors with
respect to various meaningful loss functions.

In the application section of this paper, the reader is primarily
referred to Table I and Figs. 1 and 2 for input parameters and
output estimators of availability for the four different compo-
nents selected as examples. Case 1) is for single components
only, without network consideration. Case 2) is for networks of
different topology, with Configuration 1 (series), Configuration
2 (parallel), Configuration 3 (series-in-parallel), and Configu-
ration 4 (parallel-in-series), when component 1 input data are
used invariably for all four components that make up the con-
figuration. Case 3) is the same as Case 2) except for the detail
that the components are not identical and selected in the order
from component 1 to 4 as listed in Table I.

The variances of both and are identical as expected, and
so are their standard deviations. is left-skewed with a negative
sign, and is right-skewed with a positive sign at a mirror image.
Standard deviations for both are 0.045, skewness yield 1.11

and 1.11, respectively, and data-resistant medians are 0.8985
and 0.1015, respectively, all for Component 1. Both RVs have
positive kurtosis , which denotes that these RV have
leptokurtic distributions where the tail thickness is above that of
a standard normal distribution. Moreover, the kurtosis is above
1.0, indicating a thicker tail than that of the standard normal
distribution with a reference of unity. Simpson’s trapezoidal rule
is used with a very fine precision to obtain these results on the
moments of and , , or
for intervals like or

, or as some examples.
In the upper input part of Table I, complying with the given

definitions, the gamma priors for the failure and repair rates as to
indicating left or right skewness or symmetry can be chosen by
the analyst at will with an educated guess or expert judgment as
in Fig. 2 [1]. For example, prior inputs of the failure and repair
rates for component 3 in Table I with and denote
a peaked hyperexponential as on the very upper left in Fig. 2,
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Fig.3. Ninety percent confidence intervals for the right skewed unavailability (on the left) and the left skewed availability (on the right) RVs. (See Table I.)

whereas , resembles an almost flattened-mound-
like shape at most rising to a probability of 0.1 given in the very
bottom right.

Keeping all other parameters constant, it may be observed
that as the a priori distributions of the failure and repair rates
are more realistic, i.e., as the sampled up and down time sizes
(number of occurrences) and get larger and larger and corre-
spondingly the total up- and down-times increase, then the mean
of the RV FOR approaches the MLE used by conventional
methods [5]. It may be observed for component 4 in Table I,
for example, that by taking a large number of failure and re-
pair events, such as 10 000, the small-sample Bayesian estima-
tors converge to the large-sample estimator of divided by
the sum of and , which is 0.9. When the total up- and
down-times for component 4 were elevated to
and for and , the Bayesian
estimators , , and

all became closer and closer to the 0.9 mark, the
large-sample estimate, or the conventional MLE. Further sup-
porting this fact in a sequence of sensitivity analyses: ,

, , and yielded
, , ; and

, , , resulted
in , , , each
time converging to the conventional MLE.

In the event of insufficient data, it is demonstrated that the
Bayes estimators depending on the type of priors and penalty
functions are good alternatives when large sample asymptotic
estimators cannot be obtained. A wise choice of prior param-
eters and penalty functions is an important requirement, since
the more realistic these judgments are, the more accurate the re-
sults will be. Otherwise, assuming large sample estimators when
large sample data is not available may lead to erroneous calcula-
tions of component and propagated network availability. There-
fore, in an algorithmic sequence, do the following.

1) Decide on your prior functions for your components by
considering a list of gamma plots such as in Fig. 2 for
your failure and repair rates as shown in Table I.

2) Decide on your loss or penalty function.
3) Decide on whether to use informative or noninformative

priors.
4) According to which decisions are made, choose your

Bayesian estimator(s) such as , , , .

These rules then hold also for the network applications, namely,
, , , according to a given topology, a sample of

which is in Fig. 1. Moreover, these calculations are applicable
to any complex (nonseries-parallel) networks, which have not
been illustrated due to lack of space [25], [26].

Finally, Fig. 3 illustrates some further applications as follows:

1) 90% confidence intervals for the population mean using
the Bayes Estimator for a single component regarding un-
availability and availability RV for component 1
data in Table I;

2) medians and interquartile ranges for a single component
regarding unavailability and availability RV, using
component 1 data in Table I;

3) comparison of various availability estimators for a single
component, using component 1 data in Table I;

4) comparison of various availability estimators for a net-
work with four components in series, using component
1 data in Table I.

5) density plots for the right skewed unavailability and the
left skewed availability RV side by side using four dif-
ferent component data as in Table I.

APPENDIX A

The results shown in many textbooks indicate that the resi-
dence times in the down-state prior to the up-state, or vice versa,
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Fig.4. Medians and interquartile ranges for unavailability and availability RVs. (See Table I.)

Fig.5. Comparison of availability estimators for a single component. (See Table I.)

are roughly exponentially distributed for most electronic hard-
ware equipment. Let and be the up- and down-times, re-
spectively. Then, it follows:

(A.1)

(A.2)

where number of up times sampled and number of
down times sampled. Now let the generator failure rate and
the repair rate have independent prior distributions from the
gamma family

(A.3)

where, for prior, shape parameter and inverse scale
parameter, and

(A.4)

where, for prior, shape parameter and inverse scale
parameter, are all estimated by means of a suitable prior esti-
mation technique. The posterior distributions of and will be
obtained by mixing their priors with the data. Since the family
of gamma prior distributions for the failure rate and repair
rate are conjugates to the exponential distributions of the “up”
and “down” data, respectively, their respective posterior distri-
butions will have the same gamma form with shape and scale
parameters equal to the sum of the scale and shape parameters
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Fig.6. Comparison of availability estimators for a series network (four components).

Fig.7. Density plots for the right skewed unavailability (on the left) and the left skewed availability (on the right) RVs.

of the prior and the current up- or down-time total. Therefore,
from the sequence of (1)–(4), the joint likelihood of the uptime
RVs is

(A.5)

where number of occurrences of “up” times sampled and
total sampled “up” time for number of occurrences. The

joint distribution of data and prior becomes

(A.6)

Thus, the posterior distribution for is

(A.7)

which is the Gamma or gamma ( , 1/ )
as earlier suggested due to conjugacy property. The same argu-
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ments hold for the repair rate . That is

(A.8)
is the gamma or gamma (m , ) pos-
terior distribution for , where number of occurrences of
“down” times sampled and total sampled “down” times
for number of occurrences, usually .

Let be the random variable for FOR Unavailability
Then derive its cdf, where

AREA for given (A.9)

Now, use the property that gamma (n , ) has the moment
generating function . This is the mgf of the chi-
square distribution with 2n degrees of freedom. Then it follows:

distribution with numerator

and denominator (A.10)

It follows from (A.9) that by taking reciprocals of both sides and
switching the inequality sign

(A11)

Multiplying both sides of (A.11) by ,
one obtains

AREA (A.12)

In other words, we obtain an equivalent AREA for the solution
of in (A.12), instead of attempting to calcu-
late AREA for (A.9) whose distributional form is not known or
recognized. That is, note that AREA AREA . Now that we
have an accurate representation of the cdf of , namely, ,
let us find its mathematical expression by equating AREA to
AREA

(A.13)

Note that Snedecor’s -density is given by [12, p. 23]

(A.14)
where , for , and

for , and .
Since (A.13) is differentiable, using (A.14) and differenti-

ating with respect to through obeying the “chain rule” leads to
(note, and )

(A.15)

Simplifying and rearranging through a number of intermediate
steps

(A.16)

(A.17)

Resubstituting for , , , and

(A.18)

is the pdf of the RV , as defined above for the
underlying distributional assumptions stated.

APPENDIX B

Given a weighted squared error loss function for an unknown
parameter and estimator , where the sample data
vector , , and weight function is

, as such

(B.1)

Assuming that the prior of is , the joint density of prior
and is given by

(B.2)
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Then, the conditional (posterior) distribution of given is as
follows:

(B.3)

(B.4)

Bayes solution is the minimum of the Bayes risk ,
for which

(B.5)

(B.6)

(B.7)
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